
ar
X

iv
:1

40
3.

60
60

v1
 [

cs
.F

L
]

 2
4

M
ar

 2
01

4

Monoid automata for displacement context-free

languages

Alexey Sorokin1,2

1 Moscow State University, Faculty of Mathematics and Mechanics
2 Moscow Institute of Physics and Technology,
Faculty of Innovations and High Technologies

Abstract. In 2007 Kambites presented an algebraic interpretation of
Chomsky-Schützenberger theorem for context-free languages. We give
an interpretation of the corresponding theorem for the class of displace-
ment context-free languages which are equivalent to well-nested mul-
tiple context-free languages. We also obtain a characterization of k-
displacement context-free languages in terms of monoid automata and
show how such automata can be simulated on two stacks. We introduce
the simultaneous two-stack automata and compare different variants of
its definition. All the definitions considered are shown to be equivalent
basing on the geometric interpretation of memory operations of these
automata.

1 Introduction

In last decades the theory of monoid automata attracts a great interest both
from the specialists in the theory of formal languages and algebra. The first are
looking for a fine algebraic characterization of formal languages, which simplifies
studying their properties and shows known theoretical facts in a wider scope. The
algebraists are interested in the questions of effective computations in groups
and semigroups where different variants of automata can be useful. Also the
theory of monoid automata has some connections with the combinatorial group
theory, e.g. in studying word problems for groups. For a more detailed survey
and references see [4] or [17].

A monoid automaton (or valence automaton) is a finite automaton augment-
ed with a register storing an element of a particular monoid. Each transition of
the automaton multiplies the current element in the memory by the monoid ele-
ment associated with this transition. The automaton accepts a word if it reaches
a final state after reading the word with the monoid unit in the register. The us-
age of the memory register allows to recognize more complex languages then the
usual automata do. Evidently, the recognizing power essentially depends from
the monoid serving as the register.

There is a straightforward approach to present a characterization of a lan-
guage family in case there exists some another formal model of memory and
computation for processing it. Assume that there is no content in the memory
before reading the word and the memory storage should also be empty in the

http://arxiv.org/abs/1403.6060v1

2

end in case the word is recognized. This condition holds for standard models of
computation such as pushdown automata or embedded pushdown automata as
well as for many other models. Consider the composition of all the operations
executed during the successful computation, it obviously equals the identity el-
ement. So in this case it suffices to consider the monoid of admissible memory
operations to provide a monoid automaton for a given family of languages.

For example, for the family of context-free languages every admissible op-
eration is a composition of pushing and popping some symbols from the stack.
The monoid of such operations is just the polycyclic monoid Bn = {xi, xi | 1 ≤
i ≤ n}∗/{xixi = 1 | 1 ≤ i ≤ n} ([9]) where x1, . . . , xn are the elements of the
stack alphabet and the equality xixi = 1 reflects the fact that popping xi im-
mediately after pushing it on the stack is the same as doing nothing. But if the
computation model is more complicated such as embedded pushdown automata
for tree-adjoining languages this approach is useless because we cannot recover
the structure of the monoid of operations.

The alternative approach to solve this problem is given in the work of Kam-
bites ([4]). He shows that in the case of context-free languages we may use
the Chomsky-Schützenberger theorem, which states that every context-free lan-
guage is the rational transduction of the language of correct bracket sequences.
By Kambites theorem it suffices to find a monoid with an identity language iso-
morphic to the set of correct bracket sequences and use its elements as memory
contents. It is not very interesting in the case of context-free languages because
such a monoid is unsurprisingly a polycyclic monoid but very useful in gen-
eral since Chomsky-Schützenberger theorem is known for different families of
languages.

In our work we consider the family of displacement context-free languages
([14]) which coincides with the family of well-nested multiple context-free lan-
guages. Some computer scientists offer them as a possible candidate to formalize
the notion of mildly context-sensitive language (see [8]). Chomsky-Schützenberger
theorem for this family of languages is proved in [16]. We use this theorem to
give a characterization of displacement context-free languages in terms of monoid
automata and then show how the element of the constructed monoid are inter-
preted as operations on two stacks.

The paper is organized as follows: first we recall the definition of a monoid
automaton and present the Kambites theorem. Then we define the family of dis-
placement context-free languages and formulate the Chomsky-Schützenberger
theorem for it. We interpret the multibracket sequences from this theorem as
the identity language of some monoid which gives us the characterization of dis-
placement context-free languages in terms of monoid automata. Afterwards we
show that this monoid is isomorphic to a particular submonoid of the cartesian
product of two polycyclic monoids which allows us to interpret its elements as
operations on the pair of stacks. Then we study some variants of the obtained
computation model and show that its recognizing power does not depend on the
possibility to observe the contents of the stacks before executing the command
and other minor modifications of its definition.

3

2 Preliminaries

2.1 Monoid automata

In this section we introduce the definitions and concepts which would be useful in
the further. We expect the reader to be familiar with basic notions of formal lan-
guages theory, such as finite automata, rational transductions and context-free
grammars, also some knowledge of semigroup theory is required. For necessary
information refer to any textbook on formal languages theory, such as [12], al-
so see [1] and [5] for the introduction into the theory of rational transductions
and theory of semigroups respectively. In this section we focus the attention on
monoid automata and its interconnections with other objects of formal languages
theory.

Definition 1. A monoid automaton (M -automaton) over the alphabet Σ is a
tuple A = 〈Q,Σ,M,P, q0, F 〉 where Q is a finite set of states, Σ is a finite
alphabet, M is a partial monoid with the identity 1, q0 ∈ Q is an initial state,
F ⊆ Q is the set of final states and P ∈ Q × M × (Σ ∪ ǫ) × Q is a set of
transitions.

Just in the case of finite automata the notion of a label can be extended from
edges to paths in the automaton. The only difference is that we replace mere
concatenation by the multiplication operation of the monoid. According to this
definition, the usual finite automata are 1-automata. Note that in all the cases
we consider nondeterministic automata, which means we allow multiple moves
with the same label in one state. Also note that monoid automata are blind in
the sense that they do not take the current element in the memory into account
before multiplying it by the element associated with an edge.

Definition 2. A word w ∈ Σ∗ is accepted by the M -automatonA=〈Q,Σ,M,P,
q0, F 〉 iff there is a state q ∈ Q such that the pair 〈1, w〉 labels some path from
q0 to q. The language recognized by the automaton A is denoted by L(A).

Example 1. Let S1 be a monoid with the generators {α, α} and the defining
relation α ◦1 α = 1 and S2 be a monoid with the generators {β, β} and the
defining relation β ◦2 β = 1. Then the language {anbncn | n ∈ IN+} is rec-
ognized by an automaton α = 〈{q0, q1, q2}, {a, b, c}, S1 × S2, P, q0, {q2}〉 where
P = {〈q0, 〈α, 1〉, a, q0〉, 〈q0, 〈α, β〉, b, q1〉, 〈q1, 〈α, β〉, b, q1〉, 〈q1, 〈1, β〉, c, q2〉,
〈q2, 〈1, β〉, c, q2〉}.

LetM be a finitely generated monoid and X be its system of generators. The
identity language ofM consists of all the words inX∗ that represent identity. The
proposition below enlightens the connection between monoid automata and finite
transducers. It entails that the class of languages recognized by M -automata is
closed under rational transductions for any finitely generated monoid M .

Proposition 1 (Kambites, 2007). The following conditions are equivalent:

4

1. L is accepted by an M -automaton.
2. L is a rational transduction of the identity language of M with respect to

some finite generating set X.
3. L is a rational transduction of the identity language of M with respect to

every finite generating set X.

This result of Kambites offers a powerful method of characterizing a particu-
lar family of languages in terms of monoid automata, if this family is closed under
rational transductions. To prove that all languages recognized by M -automata
are, for an instance, context-free, it suffices to construct a context-free grammar
for the identity language of M . To prove the opposite inclusion one may either
present an automata characterization of the language family (pushdown automa-
ta give such characterization for context-free languages) and then translate it to
the language of monoid automata or find some “typical” language in the family,
such that all other languages are its images under rational transductions, and
show that this language recognized by anM -automaton for the monoidM under
consideration.

For context-free languages it is reasonable to use Chomsky-Schützenberger
theorem. The Dyck language of rank n is a language containing all correct bracket
sequences on n types of brackets a1, a1, . . . , an, an. It is generated by a context-
free grammar with the rules S → aiSaiS, S → ǫ, where i ranges from 1 to n. The
next theorem shows that it is in some sense “typical” among the context-free
languages:

Theorem 1 (Chomsky-Schützenberger, [2]). A language L is context-free
if and only if it is a rational transduction of the language Dn for some n ∈ IN.

The proof of this theorem can be found, for example, in [5]. Informally, the
statement of the theorem roughly corresponds to the fact that the subtrees of
the derivation tree are either embedded one into another or do not intersect.
Now we want to show that in fact this theorem is about monoid automata.

Let X be a finite set of generators, then for every element x ∈ X we define
two operators Px and Qx on the free monoid X∗. Px transforms a string w to
the string wx simulating the push operation. Qx conversely transforms a string
of the form wx to the string w and is a right inverse of Px. The set of all Px, Qx

is extended to the submonoid PX of the monoid of partial functions from X∗ to
X∗. This monoid was first studied in the work of [9] and plays a great role in
the structural theory of semigroups.

Polycyclic monoid automata obviously are capable to perform the operations
“push” and “pop” of usual pushdown automata, which suffices to simulate its
work. Note that if we refer to the elements of X as types of brackets, then Px

naturally corresponds to the opening bracket, as well as Qx to the closing. With
respect to this translation the identity language of the monoid PX is exactly the
set of correct bracket sequences. Summarizing, the following theorem holds:

Theorem 2 (Kambites, 2007). The following conditions are equivalent:

1. The language L is context-free.

5

2. The language L is recognized by some polycyclic monoid automata.

Note that this theorem can also be proved directly without any references to
Chomsky-Schützenberger theorem, just in the same way like the equivalence
between context-free grammars and pushdown automata is established.

2.2 Displacement context-free grammars

In this section we define the generalization of context-free grammars, the dis-
placement context-free grammars (DCFGs), introduced in [14]. They are just
another realization of well-nested multiple context-free grammars (wMCFGs)
but are more convenient for the purposes of our work. It is worth noting that
wMCFGs are thoroughly studied in last years, for example in [7] or [8].

Let Σ be a finite alphabet and 1 be a distinguished separator, 1 /∈ Σ. For
every word w ∈ (Σ ∪ 1)∗ we define its rank rk(w) = |w|1. We define the j-th
intercalation operation +j which consists in replacing the j-th separator in its
first argument by its second argument. For example, a1b11d+2 c1c = a1bc1c1d.

Let k be a natural number and N be the set of nonterminals. The function
rk:N → 0, k assigns every element of N its rank. Let Opk = {·,+1, . . . ,+k}
be the set of binary operation symbols, then the ranked set of correct terms
Tmk(N,Σ) is defined in the following way (we write simply Tmk when it causes
no confusion):

1. N ⊂ Tmk(N,Σ),
2. Σ∗ ⊂ Tmk(N,Σ), ∀w ∈ Σ∗ rk(w) = 0,
3. 1 ∈ Tmk, rk(1) = 1,
4. If A,B ∈ Tmk and rk(A) + rk(B) ≤ k, then (A · B) ∈ Tmk,
rk(A ·B) = rk(A) + rk(B).

5. If j ≤ k, A,B ∈ Tmk, rk(A) + rk(B) ≤ k + 1, rk(A) ≥ j, then
(A+j B) ∈ Tmk, rk(A ·B) = rk(A) + rk(B) − 1.

We will often omit the symbol of concatenation and assume that concatena-
tion has greater priority then intercalation, so Ab+2 cD means (A · b)+2 (c ·D).
The set of correct terms includes all the terms of sort k or less that also do not
contain subterms of rank greater than k. The set of ground terms GrTmk(Σ)
consists of all terms that have only elements of Σ∗ ∪ {1} in its leafs. For ev-
ery ground term we can calculate its value interpreting elements of Σ ∪ 1 as
themselves and the operation symbols · and +j as concatenation and j-th inter-
calation respectively. Let ν:GrTmk(Σ) → (Σ ∪ 1)∗ be the value function, then
in this interpretation rk(α) equals rk(ν(α)) for every ground term α. If we assign
every nonterminal of rank j an arbitrary word of rank j, the same interpretation
holds for non-ground terms either.

Definition 3. A k-displacement context-free grammar (k-DCFG) is a quadru-
ple G = 〈N,Σ, P, S〉, where Σ is a finite alphabet, N is a finite ranked set of
nonterminals and Σ ∩N = ∅, S ∈ N is a start symbol such that rk(S) = 0 and
P is a set of rules of the form A → α. Here A is a nonterminal, α is a term
from Tmk(N,Σ), such that rk(A) = rk(α).

6

A context C[] is simply a term from Tmk with a distinguished placeholder #
instead one of its leafs. If β is a term, then C[β] denotes the result of replacing
by β (in case the resulting term is in Tmk). For example, C[] = b1 +1 (a ·#)
is a context and C[A · c] = b1 +1 aAc.

Definition 4. The derivability relation ⊢G∈ N×Tmk associated with the gram-
mar G is the smallest reflexive transitive relation such that the facts (B → β) ∈
P and A ⊢ C[B] imply that A ⊢ C[β] for any context C. Let the set of words
derivable from A ∈ N be LG(A) = {ν(α) | A ⊢G α, α ∈ GrTmk}. Then
L(G) = LG(S).

Example 2. Let the i-DCFG Gi be the grammar Gi = 〈{S, T }, {a, b}, Pi, S〉.
Here Pi is the following set of rules (the notation A → α|β stands for
A→ α,A→ β):

S → (. . . (
︸ ︷︷ ︸

i−1 times

aT +1 a) + . . .) +1 a | (. . . (
︸ ︷︷ ︸

i−1 times

bT +1 b) + . . .) +1 b

T → (. . . (
︸ ︷︷ ︸

i−1 times

aT +1 1a) + . . .) +i 1a | (. . . (
︸ ︷︷ ︸

i−1 times

bT +1 1b) + . . .) +i 1b | 1i

The grammar Gi generates the language {wi+1 | w ∈ {a, b}+}. For example, this
is the derivation of the word (aba)3 in G2: S → (aT +1 a) +1 a → (a((bT +1

1b) +2 1b) +1 a) +1 a → (a((b((aT +1 1a) +2 1a) +1 1b) +2 1b) +1 a) +1 a →
(a((b((a11 +1 1a) +2 1a) +1 1b) +2 1b) +1 a) +1 a = (a(b(a1a1a+1 1b) +2 1b) +1

a) +1 a = (aba1ba1ba+1 a) +1 a = abaabaaba.

We have already noted that k-DCFGs are equivalent to well-nested (k + 1)-
multiple context free grammars. In the case of k = 1 the intercalation operation
is simply the wrapping operation of head grammars ([10], [11]), which are equiv-
alent to tree adjoining grammars (TAGs), as proved in [15]. We will not recall
the definitions of these classes due to the lack of space. The interested reader
may consult [13] and [7] for the definitions of wMCFGs and [3] for the definition
of TAGs.

Comparing the definition of DCFG with the definition of wMCFG it is nec-
essary to mention that wMCFGs does not impose any condition on the rank of
subterms which are well-nested substructures of the righthand side of the rule in
terms of wMCFGs. However, this restriction can be also removed in the case of
DCFGs: it is possible to show that for every term α which do not contain leaves
of sort greater then k and is of sort k itself an equivalent term β ∈ Tmk(N,Σ)
can be constructed. Equivalence in this case means that both terms have the
same value under arbitrary assignment of values to nonterminals. We omit the
details of the proof. So the condition on subterm ranks is redundant in general
but we leave it for the sake of consistence.

7

2.3 Chomsky-Schützenberger theorem and correct multibracket
sequences

To present the Chomsky-Schützenberger theorem we should replace brackets
with multibrackets. Let X be a ranked alphabet with the arity function ρ:X →
1, L, where L is a positive integer called the rank of X . We define the set of
multibrackets B(X) = {xj , xj | x ∈ X, j ∈ 1, ρ(x)}. Let w[j] denotes j-th
letter in a word w ∈ B(X)∗ (the numeration starts with zero) and Pos(w) =
{0, 1, . . . , |w| − 1}.

Definition 5. w ∈ B(X)∗ is called a correct multibracket sequence if the set
Pos(w) can be partitioned into disjoint sets H1, . . . , Hm such that:
1) Every Ht contains an even number of elements. If i1 < j1 < i2 < . . . < ir < jr
are the elements of some set Ht,then there exists an element x ∈ X such that
r = ρ(x) and for every l ≤ r it holds that H [il] = xl, H [jl] = xl.
2) If H and H ′ are two sets in the partition and i1 < j1 < . . . < ir < jr and
i′1 < j′1 < . . . < i′s < j′s are their elements, then one of the following alternatives
holds:

– jr < i′1 or j′s < i1,
– There exists l ∈ 1, r − 1 such that jl < i′1 < j′1 < . . . < i′s < j′s < il+1 or
there exists l′ ∈ 1, s− 1 such that j′l′ < i1 < j1 < . . . < ir < jr < i′l′+1.

– For every l ∈ 1, r there exists l′ ∈ 1, s such that i′l′ < il < jl < j′l′ or for
every l′ ∈ 1, s there exists l ∈ 1, r such that il < i′l′ < j′l′ < jl.

The generalized Dyck language D(X) over the alphabet X is the language of
all correct multibracket sequences w ∈ B(X)∗. Informally, let the set H in the
partition consist of the positions i1 < j1 < . . . < is < js. Let the elements of H
define a closed curve on the plane as it is shown on the figure below (s = 3), we
refer to the set of such curves as the induced curves of the partition:

i1 j1 i2 j2 i3 j3

Then w is a correct multibracket sequence if it is possible to partite its set
of positions in a way that the induced curves of this partition do not intersect.
There is another geometrical intuition behind this definition: every set H in the
partition of correct multibracket sequence divides the sequence into its “interior”
and “exterior”. For any other set H ′ in the partition there are four possibilities:
H ′ is in the interior of H ; H is in the interior of H ′; H ′ lies entirely in one of
the intervals of the exterior of H ; H lies entirely in one of the intervals of the
exterior of H ′. Let H consist of the elements i1 < j1 < . . . < is < js and H ′

consist of i′1 < j′1 < . . . < i′t < j′t. The picture below illustrates the possible
variants of their mutual position (s = 3 and t = 2).

8

i1 j1 i2 j2 i3 j3 i′1 j′1 i′2 j′2

i1 j1 i2 j2 i3 j3i′1 j′1 i′2 j′2

i1 j1 i2 j2 i3 j3i′1 j′1 i′2 j′2

The next proposition offers (rk(X) − 1)-DCFG for D(X), the proof follows
from the definitions, so we omit it (we just reformulate the wMCFG-grammar
from [16] in terms of DCFGs):

Proposition 2. Let X be the ranked alphabet of rank L, then the language of
correct multibracket sequences over X is generated the (L − 1)-DCFG GX =
{{Si | i ∈ 0, L− 1}, B(X), PX , S0} where PX contains the following rules:

– Si+j → SiSj , i+ j < L,

– Si+j−1 → Si +l Sj , i+ j ≤ L, l ≤ i < L,

– Sr→x1 (. . . (
︸ ︷︷ ︸

r times

Sr +1 (x
11x2))+2. . .) +r (x

r1xr+1))xr+1, x ∈ X, r = ρ(x)− 1,

– S0 → ǫ, S1 → 1.

Below we formulate the Chomsky-Schützenberger theorem for the class of k-
DCFGs. We omit the proof, since, as mentioned in [16], it can be recovered from
the analogous theorem for the class of all MCFGs with natural modifications.

Theorem 3. The language L is a k-displacement context-free language if and
only if it is a rational transduction of generalized Dyck language D(X) for some
alphabet X of the rank k + 1.

9

3 Monoid automata for displacement context-free

grammars

In this section we characterize the class of k-displacement context-free languages
in terms of monoid automata. For any set of X of multibrackets we construct
a monoid whose identity language is exactly D(X) and then use Chomsky-
Schützenberger and Kambites theorems to prove the desired result.

Let X be a generating set, rk(X) = L and ar:X → [1, L] be the arity
function. Let A be the set A = {ax,i | x ∈ X, 1 ≤ i ≤ rk(x)}. We define two
homomorphisms φ1, φ2:B(X) → P (A), setting φ1(x

i) = ax,i, φ1(x
i) = ax,i,

φ2(x
1) = ax,1, φ2(x

i−1) = ax,i, φ2(x
i) = ax,i, i ∈ 2, ar(x), φ2(x

ar(x)) = ax,0. We
introduce the factor-monoid SX = B(X)/Kerφ where φ(x) = 〈φ1(x), φ2(x)〉:
B(X) → P(A)× P(A). Then B(X) can be considered as the generating set for
SX and we want to prove that the identity language of SX is exactly D(X).

Let w be a word representing identity in SX and w1, w2 be the words repre-
senting its images under φ1, φ2 respectively. Then w1 and w2 represent identity
in P(A). Let R1, R2 be the binary relations over Pos(w) defined as follows:
(i, j) ∈ Rl iff wl[i] and wl[j] contract with each other when reducing the word
wl to identity. Since there is only one “contracting relation” for any correct
bracket sequence, the relations R1, R2 are uniquely defined by the word w which
represents identity.

Proposition 3. Let x ∈ X, r = ar(x) and i1 < j1 < . . . < ir < jr be such that
w[i1] = x0 and it holds that (il, jl) ∈ R1 for any l ≤ r and (jl, il+1) ∈ R2 for any
l < r. Then (i1, jr) ∈ R2 and for any l < r it holds that w[il] = xl, w[jl] = xl.

Proof. The second statement is established according to the definitions of φ1, φ2
and R1, R2. It remains to prove the first one. There is a cycle of numbers p1 =
i1, q1 = j1, . . . , pr = ir, qr = jr, pr+1, qr+1, . . . , p2r, q2r, . . . , pdr, qdr, pdr+1 = p1
such that (pl, ql) ∈ R1 and (ql, pl+1) ∈ R2 for any l ≤ dr. We prove that actually
r = 1 which implies the theorem. Suppose the converse and let i1 be the leftmost
element i in this cycle such that w[i] = x0, then pr+1 > p1. It is easy to prove
by induction on t using the planarity of R1, R2 that for every t > r there exists
some l ≤ r such that il < pt < qt < jl and pr+1 ≤ pt < qt < qr. This contradicts
the equality pdr+1 = p1. The proposition is proved.

Let us call refer as chain cycles the sets consisting of i1, j1, . . . , ir, jr from the
proposition. They form a partition of Pos(w) since R1, R2 are total one-to-one
relations. The proposition above and the planarity of relations R1, R2 imply that
chain cycles can serve as sets Hl from the definition of multibracket sequence.
So we have proved:

Lemma 1. Any element of the identity language of SX with respect to the set
B(X) is a correct multibracket sequence over the set X.

Lemma 2. Any correct multibracket sequence over the set X is an element of
the identity language of SX with respect to the set B(X).

10

Proof. Recall the grammar GX from the previous section generating the set
D(X). To prevent confusion we denote the separator in the grammar by #
instead of 1 We extend the mappings φl to the set (B(X) ∪ {#})∗ defining
φ1(#) = φ2(#) = 1. We denote by µl(w) the value of the word φl(w) in P(A),
obviously µl is a homomorphism. We want to prove by induction that if Si ⊢
w, w = w0#w1 . . .#wi, then µ1(w0) = µ1(w1) = . . . = µ1(wi) = µ2(w) = 1.

Consider the rule applied in the root of the derivation tree. The basis of
induction if the obvious case of the rules S0 → ǫ or S1 → #. In case of the rules
Si+j → Si · Sj and Si+j−1 → Si +k Sj the induction statement follows from the
fact that the inverse homomorphic image of 1 is closed under concatenation and
intercalation.

In the case of the rule Si → x1(. . . (Si+1 (x
1#x2)+2 . . .)+i (x

i#xi+1)xi+1 we
consider the components of the word w. There exists a word u = u0# . . .#ui,
derivable from Si, such that for any j ≤ i it holds that wi = xi+1uix

i+1. So
µ1(wl) = µ1(x

l+1)µ1(ul)µ1(x
l+1) = ax,l+11ax,l+1 = 1. Let us prove µ2(v) = 1,

indeed µ2(v) = µ2(x
1)µ2(u

0)µ2(x
1#x2)µ2(u

1) . . . µ2(x
i#xi+1)µ2(ui)µ2(x

i+1) =
ax,1µ2(u0)ax,2ax,2µ2(u1) . . . ax,i+1ax,i+1µ2(ui)ax,1 = ax,1µ2(u)ax,1 = ax,1ax,1 =
1. The last case is verified and the lemma is proved.

Theorem 4. The class of languages recognized by k-DCFGs is exactly the class
of languages recognized by SX-automata for the generating sets X of rank k+1.

Proof. By the lemmas above the language SX coincides with the set of multi-
bracket sequencesD(X), which is generated by a (rk(X)−1)-displacement gram-
mar. Other languages recognized by SX -automata are its images under rational
transductions and, hence, displacement context-free languages since the latter
are closed under rational transductions. From Theorem 3 it follows that all
k-displacement context-free languages are rational transductions of D(X) for
some set X of rank k + 1 and then by Theorem 2 they are all recognized by
SX -automata.

4 Simultaneous two-stack automata

In the case of usual bracket sequences the opening and closing brackets naturally
correspond to push and pop operations. In the case of multibracket sequences
each bracket is in fact a pair of brackets, so every multibracket is an operation on
the pair of stacks. The full power of two-stack machines allows to simulate every
recursively enumerable language, but in our case there are some restrictions on
possible operations. The most principal limitation is that our operations are
synchronized: every move changes the length of each stack by 1. In general,
there are only four possible types of operations: push the same symbol on both
stacks, move the symbol from the first stack to the second, return a symbol back
to the first stack from the second and remove the same symbol from both the
stacks. Also the rank of a symbol determines the number of time it is exchanged
between the stacks.

11

Note that Proposition 3 in fact postulates that if a symbol a of arity k is
pushed on the stack together with its copy a′ then after transferring it 2(k − 1)
times between the stacks it would be removed together with exactly the same
symbol a′. Therefore we should trace only the number of exchanges the symbol
participated in, so we will keep in stacks not the symbols alone but the pairs
consisting of a symbol and a counter of its number of exchanges. This counter
is incremented every time the symbol is moved from one stack to another and
equals 1 after the first push. When we proceed the remove operation, we verify
that the top element of the first stack is 〈a, 2k − 1〉 and the top element of the
second stack is 〈a, 1〉 with the same a. We call this model of computation a
simultaneous two-stack automata.

Definition 6. A simultaneous two-stack automaton of rank k (k-STSA) is a
tuple A = 〈Q,Σ, Γ, ar, P, q0, F 〉 where Q is a finite set of states, Σ is a finite
alphabet, Γ is a finite stack alphabet, ar:Γ → 1, k is the arity function, P is the
set of transitions, q0 ∈ Q is an initial state and F ⊆ Q is a set of final states.
Transitions has the form (〈q1, a〉 → 〈q2, τ, α〉), where q1, q2 are states, a ∈ Σ∪{ǫ}
is an input symbol (or an empty word) and τ ∈ 〈PUSH,MOVE,RETURN,POP〉
is a command and α ∈ Γ is a stack symbol.

As in the case of usual finite automata the formal definition of the acceptance
relation is given through the notion of configuration, which is the instantaneous
description of the automaton.

Definition 7. A configuration of a simultaneous two-stack automaton A =
〈Q,Σ, Γ, ar, P, q0, F 〉 is a tuple 〈q, u, β1, β2〉 where q ∈ Q is the current state,
u is the current suffix of input, which has not been processed yet and β1, β2 are
the words in the alphabet ΣIN = Σ× IN. A transition relation ⊢A is the smallest
transitive reflexive relation such that:

– If (〈q1, a〉 → 〈q2,PUSH, α〉) ∈ P then 〈q1, au, β1, β2〉 ⊢ 〈q2, u, β1(α, 1),
β2(α, 1)〉 for any words u ∈ Σ∗ and β1, β2 ∈ ΣIN.

– If (〈q1, a〉 → 〈q2,MOVE, α〉) ∈ P then 〈q1, au, β1(α, 2i − 1), β2〉 ⊢ 〈q2, u, β1,
β2(α, 2i)〉 for any words u ∈ Σ∗ and β1, β2 ∈ ΣIN and any counter value
i < ar(α).

– If (〈q1, a〉 → 〈q2,RETURN, α〉) ∈ P then 〈q1, au, β1, β2(α, 2i)〉 ⊢ 〈q2, u,
β1(α, 2i + 1), β2〉 for any words u ∈ Σ∗ and β1, β2 ∈ ΣIN and any counter
value i < ar(α).

– If (〈q1, a〉 → 〈q2,POP, α〉) ∈ P then 〈q1, au, β1(α, 2ar(α) − 1), β2(α, 1)〉 ⊢
〈q2, u, β1, β2〉 for any words u ∈ Σ∗ and β1, β2 ∈ ΣIN.

The language L(A) recognized by the automaton equals L(A) = {w ∈ Σ∗ | ∃q ∈
F (〈q0, w, ǫ, ǫ〉 ⊢ 〈q, ǫ, ǫ, ǫ〉)}.

The condition on counter parity reflects the fact that only the symbols that
were moved from the first stack to the second can be returned back. If a symbol
was initially pushed to the second stack then it would be removed from it only
by the pop operation. That is done in order to keep the structure of multibracket

12

chain which has one “embracing” link in the lower half plane and k small links
in the upper half plane. It shows that the stacks are not completely symmetric
in their roles, in fact the first stack is basic and the second is just an additional
memory register which also stores the placeholders of symbols pushed to the first
stack to process the MOVE and RETURN operations in a correct order.

Note that the set of possible memory operations can be extended by the
KEEP command which does not change the contents of the stacks. In order to
simulate an edge with KEEP between states q1 and q2 we add a dummy state q′

in the middle and a new symbol Z of arity 1 to the stack alphabet and replace
the edge under consideration with two transitions 〈q1, a〉 → 〈q′,PUSH, Z〉 and
〈q′, ǫ〉 → 〈q2,POP, Z〉. Such procedure decreases the number of “keeping” edges
so we proceed by induction. In the further the assume that rules of the form
〈q1, a〉 → 〈q2,KEEP〉 are also allowed in the set of transitions.

Example 3. The rank 2 two-stack simultaneous automaton A = 〈{qi | 0 ≤ i ≤
6}, {a, b}, {A,B}, ar, P, q0, {q6}〉 where ar(A) = ar(B) = 2 with the set of transi-
tions specified below recognizes the crossing copy language {ambnambn | m,n ∈
IN}.

〈q0, a〉 → 〈q0,PUSH, A〉 〈q0, ǫ〉 → 〈q1,KEEP〉
〈q1, b〉 → 〈q1,PUSH, B〉 〈q1, ǫ〉 → 〈q2,KEEP〉
〈q2, ǫ〉 → 〈q2,MOVE, B〉 〈q2, ǫ〉 → 〈q3,KEEP〉
〈q3, a〉 → 〈q3,MOVE, A〉 〈q3, ǫ〉 → 〈q4,KEEP〉
〈q4, ǫ〉 → 〈q4,RETURN, A〉 〈q4, ǫ〉 → 〈q5,KEEP〉
〈q5, b〉 → 〈q5,RETURN, B〉 〈q5, ǫ〉 → 〈q6,KEEP〉
〈q6, ǫ〉 → 〈q6,POP, B〉 〈q6, ǫ〉 → 〈q6,POP, A〉

For the sake of clarity we describe the computation process of this automaton
in details. It is not difficult to see that to traverse the edges successfully the input
word should be of the form am1bn1am2bn2 on the path from q0 to q6, otherwise
some of the reading operations would be impossible. Assume we have a word
am1bn1am2bn2 that is accepted by the automaton, let us prove that m1 = m2

and n1 = n2. In the first part of its computation the automaton reads all the
a’s from the first segment of the word and both of its stacks contain the words
(A, 1)m1 . Afterwards the automaton passes the edge to q1 and reads all the b’s
from the second segment, so both the stacks contain (A, 1)m1(B, 1)n1 when the
automaton is entering the state q2. Note that A should be on the top of the first
stack in the state q3, so we should move all the B’s to the second stack in q2
and the number of necessary moves is exactly n1. Hence the first stack contains
(A, 1)m1 and the second stack contains (A, 1)m1(B, 1)n1(B, 2)n1 before reading
the second segment of a’s in q3. In q3 the automaton should read all the remaining
a’s, so the stack contents are (A, 1)m1−m2 and (A, 1)m1(B, 1)n1(B, 2)n1(A, 2)m2

when the automaton is leaving the state q3. In q4 all the A’s moved on the
previous step should be returned, so the stacks contain (A, 1)m1−m2(A, 3)m2

and (A, 1)m1(B, 1)n1(B, 2)n1 when the automaton enters q5. Note that in q5
the automaton must read all the b’s in the word in order to finish reading. So
if this stage is successful the stacks contain (A, 1)m1−m2(A, 3)m2(B, 3)n2 and

13

(A, 1)m1(B, 1)m2(B, 2)n1−n2 . Since in q6 the automaton executes only POP op-
erations there should be no (A, 1)’s on the first stack and no (B, 2)’s on the
second stack implying that m1 = m2 and n1 = n2 which was required. The
correctness of the automaton is proved.

Recall the definition of SX -automata from Section 3. Since the notion of
simultaneous two-stack automata is just a reformulation of SX -automata and
the rank of the automata equals the rank of the generating set, the following
theorem holds:

Theorem 5. Simultaneous two-stack automata of rank k recognize exactly the
family of (k − 1)-displacement context-free languages, which is the family of k-
well-nested multiple context-free languages.

It follows that simultaneous two-stack automata of rank 2 recognize exactly
the family of tree-adjoining languages.

5 Generalized simultaneous two-stack automata

Though the introduced notion of simultaneous two-stack automata of rank k
directly corresponds to the notion of (k−1)-displacement context-free language,
the formulation itself seems to be not satisfactory. The most disadvantage of
the formulation is the lack of flexibility: note that, for example, the recognizing
power of context-free languages remains the same, no matter either the lookup
of the arbitrary finite number of top stack symbols is allowed, the lookup of
only the top symbol is possible or there is no lookup at all. We want to gain the
analogous flexibility in our case.

The first inconvenient restriction is that we are bound to push and pop
the same symbols from both the stacks and it is not possible, for example, to
push A to the first stack and B to the second. Analogously we cannot remove
A from the first stack adding B to the second, the pushed symbol must be
also A. If we weaken this restriction and allow to combine arbitrary symbols
in such operations it is impossible to trace the rank of particular element of
stack alphabet. However, we still want to distinguish, say, 2-DCFLs from 3-
DCFLs so the notion of rank cannot be completely omitted. So we keep on
associating a counter with every symbol on the stacks and incrementing this
counter during every MOVE and RETURN operation. This counter is required to
be less than 2K during the computation, where K is the rank of the automaton.
The discussion above leads us to the following definition:

Definition 8. A generalized simultaneous two-stack automaton of rank k (k-
GSTSA) is a tuple A = 〈Q,Σ, Γ, P, q0, F 〉 where Q is a finite set of states, Σ is
a finite alphabet, Γ is a finite stack alphabet, P is the set of transitions, q0 ∈ Q
is an initial state and F ⊆ Q is a set of final states. Transitions has the form
(〈q1, a〉 → 〈q2, τ, α1, α2〉), where q1, q2 are states, a ∈ Σ ∪ {ǫ} is an input symbol
(or an empty word) τ ∈ 〈PUSH,MOVE,RETURN,POP〉 is a command and
α1, α2 ∈ Γ are stack symbols.

14

The notion of configuration for k-GSTSAs is the same that for usual k-
STSAs, the configuration includes the current state, the suffix of input to be read
and the contents of the stacks. Since we have changed the format of automaton
commands we should also modify the transition relation.

Definition 9. A transition relation ⊢A is the smallest transitive reflexive rela-
tion such that

– If (〈q1, a〉 → 〈q2,PUSH, α1, α2〉) ∈ P then 〈q1, au, β1, β2〉 ⊢ 〈q2, u, β1(α1, 1),
β2(α2, 1)〉 for any words u ∈ Σ∗ and β1, β2 ∈ ΣIN.

– If (〈q1, a〉 → 〈q2,MOVE, α1, α2〉) ∈ P then 〈q1, au, β1(α1, 2i − 1), β2〉 ⊢
〈q2, u, β1, β2(α2, 2i)〉 for any words u ∈ Σ∗ and β1, β2 ∈ ΣIN and any counter
value i < k.

– If (〈q1, a〉 → 〈q2,RETURN, α1, α2〉) ∈ P then 〈q1, au, β1, β2(α1, 2i)〉 ⊢ 〈q2, u,
β1(α2, 2i + 1), β2〉 for any words u ∈ Σ∗ and β1, β2 ∈ ΣIN and any counter
value i < k.

– If (〈q1, a〉 → 〈q2,POP, α1, α2〉) ∈ P then 〈q1, au, β1(α1, 2i − 1), β2(α2, 1)〉 ⊢
〈q2, u, β1, β2〉 for any words u ∈ Σ∗, β1, β2 ∈ ΣIN and any counter value
i < k.

The language L(A) recognized by the automaton equals L(A) = {w ∈ Σ∗ | ∃q ∈
F (〈q0, w, ǫ, ǫ〉 ⊢ 〈q, ǫ, ǫ, ǫ〉)}.

Note that we can simulate keeping transitions in the automaton as well as earlier.

We use the values of counters not only to trace the number of MOVE and
RETURN operations performed in a chain, but also use their parity for the same
purpose as in the case of STSA-s. In fact, we want to keep the multibracket
geometric structure of the stack contents since this structure reflects the order
and embedding of constituents.

Now we want to prove that k-GSTSAs have the same recognizing power as
k-STSAs for any natural k. First note that the latter are just a particular case of
the former since we can set α1 = α2 in all the transitions of the automaton. To
prove the opposite inclusion we again refer to multibracket sequences. In this case
we will not embed this approach into monoid framework to escape unnecessary
technicalities.

Let A = {a1, a1, . . . , am, am} be the alphabet of brackets and Y ⊆ A×A be
the set of admissible pairs. For any letter a ∈ Y we denote by πi(a), i = 1, 2,
its i-th coordinate. The mapping πi is naturally extended to words in Y ∗, we
call πi(w) the i-th projection of the word w. The notion of k-garland introduced
below is a generalization of the notion of multibracket sequence for the case of
arbitrary set Y . Recall that if u is a correct multibracket sequence, then the
contraction relation R(u) consists of all such pairs 〈i, j〉 that the letters u[i] and
u[j] contract with each other in u when reducing it to an empty word. Note that
R is always a symmetric bijection and for every correct bracket sequence there is
only one such relation. We define also an asymmetric contraction relation R<(u);
a pair 〈i, j〉 belongs to R<(u) if it belongs to R(u) and the inequality i < j holds.

15

Definition 10. The word w ∈ Y ∗ is a k-garland over the alphabet Y if the
following conditions hold:

1. π1(w), π2(w) are correct bracket sequences.
2. If i1, j1, i2, j2 are indexes such that j1 < i2, (i1, j1), (i2, j2) ∈ R(π1(u)) and

(j1, i2) ∈ R(π2(u)) then either i1 < j1 < i2 < j2, j1 < i1 < i2 < j2 or i1 = j2
(in this case also j1 = i2).

3. If i1 < j1 < i2 < j2 < . . . < il < jl is an ascending chain of indexes such
that (it, jt) ∈ R(π1(w)) for any t ≤ l and (jt, it+1) for any t < l then the
inequality l ≤ k holds.

Let R0(w) define the relation (R<(π1(w)) ∪R(π2(w)))∗. Then the following
lemma holds:

Lemma 3. Any vertex in the set Pos(w) = 0, |w| − 1 belongs to some simple
cycle in the graph GR = 〈Pos(w), R0〉.

Proof. Since the number of vertexes is finite, it suffices to proof that every edge
in R0 belongs to some infinite path with no edges traversed in both directions.
Then it suffices to show that there is in infinite path in GR with the edges
from R<(π1(w)) (we call them the edges of the second type) and the edges from
R(π2(w)) (the edges of the second type) being alternated. Let us start from an
arbitrary edge (i1, j1) of the first type and show we can always add two more
edges. Indeed, there is some edge (j1, i2) of the second type because the R(π2(w))
is a bijection. Then there is an edge (i2, j2) ∈ R(π1(w)), we need to show that
i2 < j2. In both the cases it follows from the second part of the definition of
k-garland. Then we have added to more edges to the path and the lemma is
proved.

Lemma 4. If w is a k-garland, then every vertex i ∈ Pos(w) belongs to some
cycle in the graph GR = 〈Pos(w), R〉 containing the indexes i1 < j1 < . . . <
il < jl such that for any t ≤ l it holds that (it, jt) ∈ R(π1(w)) and for any t < l
it holds that (jt, it+1) belongs to R(π2(w)). It also holds that (jt, i1) ∈ R(π2(w))
and l ≤ k.

Proof. Consider the cycle which contains i, such a cycle exists due to Lemma
3. Take the leftmost vertex i0 in this cycle and consider the longest ascending
path containing i0, according to the definition of R0(w) it starts and ends with
en edge of the first type. Then the proof of the statement (jt, i1) ∈ R(π2(w))
repeats the proof of the Proposition 3. The condition l ≤ k follows from the
definition of k-garland.

Since the structure of states is the same for automata of all kinds, we should
concentrate on the structure of their transitions. Let T be some transition of the
generalized two-stack simultaneous automaton A = 〈Q,Σ, Γ, P, q0, F 〉. Its stack
image of ψ(T) is a pair of symbols in the alphabet Γ ∪ {A | A ∈ Γ} defined as
follows:

1. If T = (〈q1, a〉 → 〈q2,PUSH, α1, α2〉) then ψ(T) = 〈α1, α2〉,

16

2. If T = (〈q1, a〉 → 〈q2,MOVE, α1, α2〉) then ψ(T) = 〈α1, α2〉,
3. If T = (〈q1, a〉 → 〈q2,RETURN, α1, α2〉) then ψ(T) = 〈α1, α2〉,
4. If T = (〈q1, a〉 → 〈q2,POP, α1, α2〉) then ψ(T) = 〈α1, α2〉.

We denote by ψ(A) = {ψ(T | T ∈ P} the set of stack images of the transi-
tions of the automaton A = 〈Q,Σ, Γ, P, q0, F 〉. Two transitions of the GSTSA
are called consecutive if the destination set of the first transition equals the
source set of the second one. We call a computation a sequence of consecutive
transitions. The computation is identity-preserving if there is nothing in the
stacks after its termination provided the stacks are empty before it starts. Note
that a word w is accepted by an automaton iff there is an identity-preserving
computation of this automaton which starts in the initial state, terminates in
some of the final states and reads exactly the word w.

Definition 11. The stack image ψ(C)) of the computation C = T1 . . .Tr is the
sequence ψ(T1) . . . ψ(Tr).

Proposition 4. The identity-preserving computations of the k-GSTSA A =
〈Q,Σ, Γ, P, q0, F 〉 are exactly all k-garlands over the set ψ(A).

Proof. Consider some sequence of “push” and “pop” operations executed on
a single stack. The emptiness of the stack if preserved under this sequence of
operations iff the sequence maps to a correct bracket sequence under a natural
encoding of operations. Since the projections of k-garlands are correct bracket
sequences every k-garland is identity-preserving.

The opposite implication uses the specificity of k-GSTSA operations. Let a
computation be identity-preserving then the first part of the k-garland definition
is obviously valid. Let Ri, i = 1, 2 denote the contraction relation of the sequence
of operations on the i-th stack. If (i1, j1), (i2, j2) ∈ R1, (j1, i2) ∈ R2 and j1 < i2;
it means that in the i2-th step of the computation we pop from the second stack
the element pushed there on the j1-th step. There are two possibilities: first, if
this pop is a part of the RETURN operation then by the definition of GSTSA
only the MOVE operation is possible in the j1-th transition of the computation,
also the symbol pushed on the first stack during the RETURN operation must
be removed somewhen later. It means that i1 < j1 and i2 < j2. The second
variant is that the POP operation is executed on the i2-th step, it implies that
the operation on the step i1 is PUSH which implies j1 < i1 and j2 < i2. Both
possibilities are allowed in the definition of k-garland so the second step is proved.
To prove the third part of the definition note that all the intermediate elements of
the ascending chains considered in that part are linked by MOVE and RETURN
operations. Since every such operation increments the value of the same counter
the number of intermediate operations is not greater then 2k − 2 and the total
number of vertexes in this chain is not greater then 2k which was required. The
lemma is proved.

Corollary 1. For any k-GSTSA A the language L(A) is a rational transduction
of the set of k-garlands over the alphabet ψ(A).

17

Proof. Evidently L(A) is the rational transduction of the set of identity-preser-
ving computations. Then we should apply the Proposition 4.

Lemma 5. The set of k-garlands over the alphabet ψ(A) is recognized by some
k-STSA.

Proof. Consider the finite set D of all possible closed chains in k-garlands and
some chain d ∈ D. Let l(d) denote its number of vertexes in the chain and d[i]
denote its i-th leftmost vertex. Consider D as the ranked alphabet with the arity
function l and define the set of multibrackets B(X) = {d[i] | d ∈ D, 1 ≤ i ≤
l(D)}. It is easy to prove that the set of k-garlands is the homomorphic image
of the generalized Dyck language D(D) of correct multibracket sequences which
is a (k − 1)-DCFL. Then it is recognized by some k-STSA due to Theorem 5.

Theorem 6. Any language recognized by some k-GSTSA is recognized by some
k-STSA.

Proof. The languages recognized by k-STSAs are closed under rational trans-
ductions. By Corollary 1 it suffices to show that the language of k-garlands is
recognized by a k-STSA which was proved in Lemma 5.

We have proved that the permission for STSA commands to combine arbi-
trary pairs of symbols does not affect its recognizing power. It is worth mention-
ing that in fact k-garlands are a natural generalization of multibracket sequence
under the same permission so the method of the Section 3 can also be used to
find another version of Chomsky-Schützenberger theorem for the DCFLs.

6 Blind and sighted automata

There is another major disadvantage in our initial definition of STSA: the au-
tomaton is not able to observe top symbols on the stacks during its computation.
Certainly, these symbols are significant in the case of POP operation since the
automaton halts if the command to execute is, say, 〈POP, A,B〉 and current
top symbols are C and D. In the same way the MOVE command takes into
account the content of the first stack, as well as the RETURN operation — of
the second. However, there is no possibility to refer to the top elements of the
stack in the case of PUSH operation. This limitation seems to be unnatural and
unpleasant, so we should find some way of modifying the automaton to overcome
this difficulty.

Let us first discuss the same problem in the case of usual pushdown automa-
ton. Assume we have a command of the kind “in the state q1 ifA is the top symbol
of the stack then read a from the input stream, push B to the stack and move
to the state q2” (we abbreviate this by 〈q, a, A〉 → 〈q2,PUSH, B〉). The common
way to simulate this instruction is to create two fresh states q′ and q′′ and add
the following transitions: (〈q1, ǫ, ǫ〉 → 〈q′,POP, A〉), (〈q′, ǫ, ǫ〉 → 〈q′′,PUSH, A〉)
and (〈q′′, a, ǫ〉 → 〈q2,PUSH, B〉). However, it is troublesome to adapt this ap-
proach to k-GSTSA since it is hard to ensure that the number of move/return

18

operations would not exceed k. Therefore we choose another way to simulate top
symbol observations.

Let k be the maximal number of stack symbols which are observed in the
transitions of the pushdown automaton. Then it has the transition of the follow-
ing two forms, where l is a natural number not greater than k:

〈q1, a, Al+1 . . . Ak〉 → 〈q2,PUSH, B〉
〈q1, a, Al+1 . . . Ak〉 → 〈q2,POP, Ak〉

Let Γ be the stack of old stack symbols and Q be the set of states. First, we
enrich the set of stack symbols with k new symbols Z1, . . . Zk which serve as
bottom markers and treat them as elements of Γ . Then the new set of states is
Q′ = {q0, qf} ∪ Q × Γn and the new stack alphabet is Γ × Γn. q0 and qf are
distinguished initial and final states, respectively, and the second component of
all other states contains the top k symbols of the stack. Analogously, the second
component of the stack symbol always keeps the k symbols below it starting
from the deepest. The symbols Z1, . . . Zk were added in order to ensure that
there are always at least k symbols in the stack. Then it is straightforward to
simulate the dependence from k top symbols by the means of the states only,
the only difficulty is to maintain the invariant we announced.

The automaton always starts from the initial state q0 and pushes to the
stack the symbols Z1 . . . Zk moving to the state (q0, Z1 . . . Zk) to start the com-
putation. Every transition of the form 〈q1, a, Al+1 . . . Ak〉 → 〈q2,PUSH, B〉 is
simulated by a new transition

〈(q1, A1 . . . Ak), a〉 → 〈(q2, A2 . . . AkB),PUSH, (B,A1 . . . Ak)〉.

Note that the deepest of the symbols observed on the previous stage in the
first component of the automaton state is now observed as the deepest symbol
of the second component of the stack top. That allows us to update the top
k symbols when the POP operation is executed: every transition of the form
〈q1, a, Al+1 . . . Ak〉 → 〈q2,POP, Ak〉 is replaced by the transition

〈(q1, A1 . . . Ak), a〉 → 〈(q2, A0A1 . . . Ak−1),POP, (Ak, A0 . . . Ak−1)〉.

It is straightforward to prove that the desired invariant is maintained. In the
end of the computation we should remove the bottom markers, so we add the
transitions of the form 〈(q, Z1 . . . Zk), ǫ〉 → 〈qf ,POP, Z1 . . . Zk〉 (it is trivial to
simulate immediate pop of k symbols by successively removing them one by one
so we simplify the notation) for all former final states q. Then it is easy to prove
that the new automaton without lookup recognizes exactly the same language
as the old automaton did.

Then the same approach can be applied to k-GSTSAs. The only modification
to be made is to trace the contents of both the stacks, not the single one. So we
have proved the following theorem:

Theorem 7. The generating power of k-GSTSAs is the same whether or not it
is allowed to take into account the top k symbols.

19

7 Conclusions and future work

We give the algebraic interpretation of Chomsky-Schützenberger theorem for
the class of displacement-context free languages which are another realization
of well-nested multiple context-free languages. We present their characterization
in terms of monoid automata. Then we introduce the computational interpreta-
tion of the introduced monoid, showing how the multiplication operation of the
monoid can be simulated on two stacks by specific combinations of PUSH and
POP operations. The flexibility of the introduced notion of two-stack automata
shows the vitality of the our approach.

There are at least two directions of future work: the first is two develop
fast analyzers for the class of DCFGs or for a significant subclass of them. For
example, it is interesting to adopt the machinery of LR or Earley algorithms for
DCFLs (see [6] for the variant of Earley analyzer for well-nested MCFGs). The
other direction is the further investigation of underlying algebraic structure. The
most straightforward question is to provide the same characterization in terms
of monoids for the variants of generalized STSAs as it is done for simple STSAs.
Also it is interesting to answer, whether the ǫ-moves are redundant, like it was
done by Zetzsche for automata based on graph products of polycyclic monoids
([18]).

References

1. Jean Berstel. Context-free languages and rational transductions. Teubner Verlag,
Stuttgart, 1979.

2. Noam Chomsky, Marcel-Paul Schützenberger. The algebraic theory of context-free
languages. In: Computer programming and formal systems, 118161. North-Holland,
Amsterdam, 1963.

3. Aravind Joshi and Yves Schabes. Tree-adjoining grammars. In G. Rozenberg and
A. Salomaa, eds., Handbook of Formal Languages, Vol. 3: Beyond Words, 69–123.
Springer, Berlin, 1997.

4. Mark Kambites. Formal languages and groups as memory. Communications in al-
gebra, 37(1) (2009) 193-208. arXiv:math/0601061.

5. Gerard Lallement. Semigroups and combinatorial applications. John Wiley & Sons,
New York. 1979.

6. Makoto Kanazawa. A prefix-correct earley recognizer for multiple context-free gram-
mars. Proceedings of the Ninth International Workshop on Tree Adjoining Grammars
and Related Formalisms (TAG+ 9). 2008.

7. Makoto Kanazawa. The pumping lemma for well-nested multiple context-free lan-
guages. Developments in Language Theory, Lecture Notes in Computer Science, 5583
(2009) 312-325.

8. Makoto Kanazawa, Sylvain Salvati. MIX is not a tree-adjoining language. Proceed-
ings of the 50th Annual Meeting of the Association for Computational Linguistics
(2012), 666-674.

9. Maurice Nivat, Jean-François Perrot. Une généralisation du monöıde bicyclique,
C.R. Acad. Sci. Paris, 271 (1970) 824-827.

10. Carl Pollard. Generalized Phrase Structure Grammars, Head Grammars, and Nat-
ural Languages. Ph.D. thesis, Stanford University, Stanford, 1984.

http://arxiv.org/abs/math/0601061

20

11. Kelly Roach. Formal Properties of Head Grammars. In: Mathematics of Language,
293-349, John Benjamins, Amsterdam, 1987.

12. Grzegorz Rozenberg and Arto Salomaa, Eds., Handbook of formal languages,
Vol. 1: Word, Language, Grammar, Springer, Berlin, 1996.

13. Hiroyuki Seki, Takashi Matsumoto, Mamoru Fujii and Tadao Kasami. On multiple
context-free grammars. Theoretical Computer Science 88(2) (1991) 191-229.

14. Alexey Sorokin. Normal forms for multiple context-free languages and displace-
ment Lambek grammars. Logical Foundations of Computer Science, Lecture Notes
in Computer Science, 7734 (2013), 319-334.

15. Aravind Joshi, K. Vijay-Shanker and David Weir. Tree adjoining and head wrap-
ping. Proceedings of the 11th Conference on Computational Linguistics (1986), 202-
207.

16. Rio Yoshinaka, Yuichi Kaji, Hiroyuki Seki. Chomsky-Schützenberger-Type Char-
acterization of Multiple Context-Free Languages. Language and Automata Theory
and Applications, Lecture Notes in Computer Science, 6031 (2010) 596-607.

17. Georg Zetzsche. On the capabilities of grammars, automata, and transducers con-
trolled by monoids. In: Automata, Languages and Programming, 222-233. Springer,
Berlin—Heidelberg, 2011.

18. Phoebe Buckheister, Georg Zetzsche. Semilinearity and Context-Freeness of Lan-
guages Accepted by Valence Automata. arXiv:1306.3260 [cs.FL]

http://arxiv.org/abs/1306.3260

	Monoid automata for displacement context-free languages
	1 Introduction
	2 Preliminaries
	2.1 Monoid automata
	2.2 Displacement context-free grammars
	2.3 Chomsky-Schützenberger theorem and correct multibracket sequences

	3 Monoid automata for displacement context-free grammars
	4 Simultaneous two-stack automata
	5 Generalized simultaneous two-stack automata
	6 Blind and sighted automata
	7 Conclusions and future work

