Abstract
We propose a distinction between bottom-up and top-down systems of natural logic, with the classical syllogism epitomizing the first and the Monotonicity Calculus the second. We furthermore suggest it useful to view top-down systems as higher-order generalizations of broadly syllogistic systems. We illustrate this view by proving a result of independent interest: we axiomatize the first-order/single-type fragment of a higher-order calculus for reasoning about inclusion and exclusion (MacCartney and Manning, 2009; Icard, 2012). We show this logic is equivalent to a syllogistic logic with All and nominal complementation, in fact a fragment of a system recently studied (Moss, 2010b).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van Benthem, J.: Questions about quantifiers. Journal of Symbolic Logic 49(2), 443–466 (1984)
van Benthem, J.: Language in Action: Categories, Lambdas, and Dynamic Logic. Studies in Logic, vol. 130. Elsevier, Amsterdam (1991)
van Benthem, J.: A brief history of natural logic. In: Chakraborty, M., Löwe, B., Mitra, M.N., Sarukkai, S. (eds.) Logic, Navya-Nyaya and Applications, Homage to Bimal Krishna Matilal, College Publications, London (2008)
Bernardi, R.: Reasoning with Polarity in Categorial Type Logic. PhD thesis, University of Utrecht (2002)
Dowty, D.: The role of negative polarity and concord marking in natural language reasoning. In: Proceedings of Semantics and Linguistic Theory (SALT) IV (1994)
van Eijck, J.: Generalized quantifiers and traditional logic. In: van Benthem, J., ter Meulen, A. (eds.) Generalized Quantifiers, Theory, and Applications. Foris, Dordrecht (1985)
van Eijck, J.: Syllogistics = monotonicity + symmetry + existential import. Technical Report SEN-R0512, CWI, Amsterdam (2005)
Endrullis, J., Moss, L.S.: Syllogistic logic with “Most”. Unpublished ms (2014)
Geurts, B., van der Slik, F.: Monotonicity and processing load. Journal of Semantics 22 (2005)
Icard, T.F.: Inclusion and exclusion in natural language. Studia Logica 100(4), 705–725 (2012)
Icard, T.F., Moss, L.S.: A complete calculus of monotone and antitone higher-order functions. Unpublished ms (2013)
Icard, T.F., Moss, L.S.: Recent progress on monotonicity. Linguistic Issues in Language Technology 9 (2014)
Kant, I.: Critique of Pure Reason. Cambridge University Press (1997)
Keenan, E.L., Faltz, L.M.: Boolean Semantics for Natural Language. Springer (1984)
MacCartney, B., Manning, C.D.: Natural logic for textual inference. In: Proceedings of the ACL Workshop on Textual Entailment and Paraphrasing (2007)
MacCartney, B., Manning, C.D.: An extended model of natural logic. In: Proceedings of the Eighth International Conference on Computational Semantics, IWCS-8 (2009)
McAllester, D.A., Givan, R.: Natural language syntax and first-order inference. Artificial Intelligence 56, 1–20 (1992)
Moss, L.S.: Logics for natural language inference. ESSLLI 2010 Course Notes (2010a)
Moss, L.S.: Syllogistic logic with complements. In: van Benthem, J., Gupta, A., Pacuit, E. (eds.) Games, Norms, and Reasons: Logic at the Crossroads, pp. 185–203. Springer (2010b)
Pratt-Hartmann, I.: Fragments of language. Journal of Logic, Language, and Information 13, 207–223 (2004)
Pratt-Hartmann, I., Moss, L.S.: Logics for the relational syllogistic. The Review of Symbolic Logic 2(4), 647–683 (2009)
Sánchez-Valencia, V.: Studies on Natural Logic and Categorial Grammar. PhD thesis, Universiteit van Amsterdam (1991)
Westerståhl, D.: Some results on quantifiers. Notre Dame Journal of Formal Logic 25(2), 152–170 (1984)
Zwarts, F.: Negatief polaire uitdrukkingen I. GLOT 4, 35–132 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Icard, T.F. (2014). Higher-Order Syllogistics. In: Morrill, G., Muskens, R., Osswald, R., Richter, F. (eds) Formal Grammar. FG 2014. Lecture Notes in Computer Science, vol 8612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44121-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-662-44121-3_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44120-6
Online ISBN: 978-3-662-44121-3
eBook Packages: Computer ScienceComputer Science (R0)