Skip to main content

Higher-Order Syllogistics

  • Conference paper
Formal Grammar (FG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8612))

Included in the following conference series:

Abstract

We propose a distinction between bottom-up and top-down systems of natural logic, with the classical syllogism epitomizing the first and the Monotonicity Calculus the second. We furthermore suggest it useful to view top-down systems as higher-order generalizations of broadly syllogistic systems. We illustrate this view by proving a result of independent interest: we axiomatize the first-order/single-type fragment of a higher-order calculus for reasoning about inclusion and exclusion (MacCartney and Manning, 2009; Icard, 2012). We show this logic is equivalent to a syllogistic logic with All and nominal complementation, in fact a fragment of a system recently studied (Moss, 2010b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • van Benthem, J.: Questions about quantifiers. Journal of Symbolic Logic 49(2), 443–466 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • van Benthem, J.: Language in Action: Categories, Lambdas, and Dynamic Logic. Studies in Logic, vol. 130. Elsevier, Amsterdam (1991)

    MATH  Google Scholar 

  • van Benthem, J.: A brief history of natural logic. In: Chakraborty, M., Löwe, B., Mitra, M.N., Sarukkai, S. (eds.) Logic, Navya-Nyaya and Applications, Homage to Bimal Krishna Matilal, College Publications, London (2008)

    Google Scholar 

  • Bernardi, R.: Reasoning with Polarity in Categorial Type Logic. PhD thesis, University of Utrecht (2002)

    Google Scholar 

  • Dowty, D.: The role of negative polarity and concord marking in natural language reasoning. In: Proceedings of Semantics and Linguistic Theory (SALT) IV (1994)

    Google Scholar 

  • van Eijck, J.: Generalized quantifiers and traditional logic. In: van Benthem, J., ter Meulen, A. (eds.) Generalized Quantifiers, Theory, and Applications. Foris, Dordrecht (1985)

    Google Scholar 

  • van Eijck, J.: Syllogistics = monotonicity + symmetry + existential import. Technical Report SEN-R0512, CWI, Amsterdam (2005)

    Google Scholar 

  • Endrullis, J., Moss, L.S.: Syllogistic logic with “Most”. Unpublished ms (2014)

    Google Scholar 

  • Geurts, B., van der Slik, F.: Monotonicity and processing load. Journal of Semantics 22 (2005)

    Google Scholar 

  • Icard, T.F.: Inclusion and exclusion in natural language. Studia Logica 100(4), 705–725 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Icard, T.F., Moss, L.S.: A complete calculus of monotone and antitone higher-order functions. Unpublished ms (2013)

    Google Scholar 

  • Icard, T.F., Moss, L.S.: Recent progress on monotonicity. Linguistic Issues in Language Technology 9 (2014)

    Google Scholar 

  • Kant, I.: Critique of Pure Reason. Cambridge University Press (1997)

    Google Scholar 

  • Keenan, E.L., Faltz, L.M.: Boolean Semantics for Natural Language. Springer (1984)

    Google Scholar 

  • MacCartney, B., Manning, C.D.: Natural logic for textual inference. In: Proceedings of the ACL Workshop on Textual Entailment and Paraphrasing (2007)

    Google Scholar 

  • MacCartney, B., Manning, C.D.: An extended model of natural logic. In: Proceedings of the Eighth International Conference on Computational Semantics, IWCS-8 (2009)

    Google Scholar 

  • McAllester, D.A., Givan, R.: Natural language syntax and first-order inference. Artificial Intelligence 56, 1–20 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Moss, L.S.: Logics for natural language inference. ESSLLI 2010 Course Notes (2010a)

    Google Scholar 

  • Moss, L.S.: Syllogistic logic with complements. In: van Benthem, J., Gupta, A., Pacuit, E. (eds.) Games, Norms, and Reasons: Logic at the Crossroads, pp. 185–203. Springer (2010b)

    Google Scholar 

  • Pratt-Hartmann, I.: Fragments of language. Journal of Logic, Language, and Information 13, 207–223 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Pratt-Hartmann, I., Moss, L.S.: Logics for the relational syllogistic. The Review of Symbolic Logic 2(4), 647–683 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Sánchez-Valencia, V.: Studies on Natural Logic and Categorial Grammar. PhD thesis, Universiteit van Amsterdam (1991)

    Google Scholar 

  • Westerståhl, D.: Some results on quantifiers. Notre Dame Journal of Formal Logic 25(2), 152–170 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Zwarts, F.: Negatief polaire uitdrukkingen I. GLOT 4, 35–132 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Icard, T.F. (2014). Higher-Order Syllogistics. In: Morrill, G., Muskens, R., Osswald, R., Richter, F. (eds) Formal Grammar. FG 2014. Lecture Notes in Computer Science, vol 8612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44121-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44121-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44120-6

  • Online ISBN: 978-3-662-44121-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics