
Typed Hilbert Epsilon Operators
and the Semantics of Determiner Phrases

– invited lecture –

Christian Retoré

LaBRI, Université de Bordeaux
(& MELODI, IRIT-CNRS, Toulouse)

Abstract. The semantics of determiner phrases, be they definite de-
scriptions, indefinite descriptions or quantified noun phrases, is often as-
sumed to be a fully solved question: common nouns are properties, and
determiners are generalised quantifiers that apply to two predicates: the
property corresponding to the common noun and the one corresponding
to the verb phrase.
We first present a criticism of this standard view. Firstly, the semantics of
determiners does not follow the syntactical structure of the sentence. Sec-
ondly the standard interpretation of the indefinite article cannot account
for nominal sentences. Thirdly, the standard view misses the linguistic
asymmetry between the two properties of a generalised quantifier.
In the sequel, we propose a treatment of determiners and quantifiers as
Hilbert terms in a richly typed system that we initially developed for lex-
ical semantics, using a many sorted logic for semantical representations.
We present this semantical framework called the Montagovian generative
lexicon and show how these terms better match the syntactical structure
and avoid the aforementioned problems of the standard approach.
Hilbert terms rather differ from choice functions in that there is one
polymorphic operator and not one operator per formula. They also open
an intriguing connection between the logic for meaning assembly, the
typed lambda calculus handling compositionality and the many-sorted
logic for semantical representations. Furthermore epsilon terms naturally
introduce type-judgements and confirm the claim that type judgment are
a form of presupposition.

1 Presentation

Determiners and quantifiers are an important ingredient of (computational) se-
mantics, at least of the part of semantics known as formal semantics or com-
positional semantics, that is concerned with what is asserted, especially by a
sentence: such a semantical analysis tells “who does what” in a sentence.

Researchers in formal linguistics, must be aware that semantics also includes
other aspects like lexical semantics, distributional semantics, vectors of words
for which there exist far more efficient natural language processing tools. These
aspects of semantics rather concern what a text speaks about.

ar
X

iv
:1

40
6.

47
10

v1
 [

cs
.C

L
]

 1
8

Ju
n

20
14

Of course both aspect are needed to understand the meaning, both for our
human use of language and for the design of applications in natural language
processing, like question answering by web searching. For instance, if one wants
to know which guitar(s) played a rock star during a concert, the negation makes
it difficult to extract the wanted information:

(1) a. Question: Which guitars did he play at the concert.

b. Funny he didn’t play a Fender at that concert at least for one song.
(web)

The standard treatment of determiners and quantifiers is to view them as
generalised quantifiers, i.e. as functions of two predicates. In this paper we ar-
gue that although such an account “works” it is not really satisfactory mainly
because it does not provide determiners with a proper logical form that can be
interpreted on its own (as in the nominal phrase 2, or when we just hear the
indefinite noun phrase of example 3) that would follow syntax (in example 4
generalised quantifiers require a predicate “Keith sang ” which does not corre-
spond to any constituent)— furthermore in the case of indefinite determiners it
introduces a misleading symmetry between topic (theme) and comment (rheme)
as example 5 shows: these sentences do not speak about the same group.

(2) Cars, cars, cars....1

(3) a. Some philosophy students

b. We already have some image(s) in mind.

c. Some philosophy students are ”free spirits” who travel, read, and
seek to live a non-traditional life.

(4) Keith sang a song I never heard of.

(5) a. Some professors are smokers.

b. Some smokers are professors.

2 The standard logical form of determiners

The idea of Montague semantics is to map sentences to formulae of higher order
logic (their logical forms) in a way which implements the Fregean principle of
compositionality: typed functions (lambda terms) associated with words in the
lexicon are composed according to the syntax. The glue logic is simply typed
lambda calculus, over two types, e for entities or individuals and t for proposi-
tions (that may there after be endowed with a truth value).

These typed lambda terms use two kinds of constants: connectives and quan-
tifiers on the one hand and individual constants and n-ary predicates for the pre-
cise language to be described — for instance a binary predicate like delighted
has the type e→ e→ t.

A small example goes as follows. Assume the syntax says that the structure
of the sentence ”Keith sang a song.” is

1 Unless otherwise stated examples are from the Web

Constant Type

∃ (e → t) → t
∀ (e → t) → t

Constant Type

not t → t
and t → (t → t)

or t → (t → t)
implies t → (t → t)

Constant Type

played , sang e → (e → t)
song (e → t)
Keith e

Fig. 1. Logical constants and language constants

(a (song))(λy Keith sang y)

where the function is always the term on the left. On the semantical side, this
means that “sang” is applied first to the property of “being a song” and to the
property “was sung by Keith”. If the semantical terms are as in the lexicon in
Figure 2, placing the semantical terms in place of the words yields a large λ-term
that can be reduced:((

λP e→t λQe→t (∃(e→t)→t (λze(&(P z)(Q z))))

(λue.song(u))
)
(λye(sange→t Keith)y)

)
↓ β

λP e→t λQe→t (∃(e→t)→t (λZe(&((λue.song(u)) z)
((λye(sange→t Keith) y) z))))

↓ β(
∃(e→t)→t (λye(&(songe→t y)((sange→(e→t) Keith) y)))

)
This λ-term of type t that can be called the logical form of the sentence,

represents the following formula of predicate calculus (admittedly more pleasant
to read):

∃y. (song(y) & sang(Keith, y))

Fig. 2. A simple semantical lexicon

word semantical type u∗

semantics : λ-term of type u∗

xv the variable or constant x is of type v

a (e → t) → ((e → t) → t)

λP e→t λQe→t (∃(e→t)→t (λze(&t→(t→t)(P z)(Q z))))

song e → t
λxe(songe→t x)

sang e → (e → t)

λye λxe ((sange→(e→t) x) y)

Keith e
Keith

This algorithm actually works because of the following result:
There is a one to one correspondence between:

– the first order formulae over a first (respectively higher order) order language
L

– the closed normal lambda terms of type t with constants that correspond to
connectives, quantifiers and to the constants, functions and predicates in L.

The computation of the semantics of a sentence boils down to complete the
following steps (see e.g. [20, Chapter 3]):

1. Parse the sentence, and turn the syntactic structure into a (linear) lambda
term of type t (at least a functor argument structure, that is a binary tree
with words as leafs and internal nodes specifying which subtree applies to the
other one). This step is much easier when syntax is handled with categorial
grammars.

2. Insert at each word’s place the corresponding semantical lambda term pro-
vided by the lexicon.

3. Beta reduce this lambda term, the normal form being a logical formula, the
semantical representation of the sentence.

2.1 Some syntactical inadequacies of the standard semantics of
determiners

As noted in the introduction, the standard approach to determiners that we
just recalled, is not fully satisfactory, and there are at least three reasons to be
disappointed by the standard semantical analysis.

A first point is that when one hears a determiner phrase, he does not need
a complete sentence nor the main clause predicate to interpret the determiner
phrase. This is easily observed from introspection: the simple utterance of a
determiner phrase already suggests some interpretations, and possible referents,
and references as individuals (sets of individuals, generic individual). It can also
be observed in corpora: novels do include sentences without verbs. This can be
observed in examples 2, 3 above or in the following examples: when one reads
“some students”, he has an idea, an image in mind, as well as when he reads
“What a thrill” or “an onion”.

(6) Some students do not participate in group experiments or projects.

(7) What a thrill — My thumb instead of an onion. (Sylvia Plath)

A second point is that this formalisation misses the asymmetry between the
noun and the main clause predicate in existential statements. This asymmetry
is the asymmetry between theme (or topic) and rheme (or comment) vanishes
because both are assumed to be predicates and the indefinite determiner simply
asserts that something has both properties, and this “and” is commutative. Even
when both statements are felicitous, their meanings do differ: the sentence and
its mirror image do not speak about the same class of objects. In the first case 8

one sentence can be said when speaking about universities or education and the
next one when speaking about a company. This difference is even more striking
in the example 8c: sentences like the first one can be read and heard (our example
is from Internet) while the second one or similar sentences cannot be found on
the Internet: the reason is probably that “crooks” do not really constitute a class
one wants to speak about.

(8) a. Some students are employees.

b. Some employees are students.

c. i. Some politicians are crooks.

ii. Some crooks are politicians. (no such examples on Internet)

A third drawback is that the semantical or logical structure of the sentence
does not match the syntactical structure (basically the parse tree) of the sen-
tence. In the example we gave, this is patent: no constituent, no phrase does
correspond to λx.(sang(Keith))xe. This is related to the fact that the deter-
miner or quantifier does not apply to a single predicate to form some term that
can be interpreted.

(9) a. Keith played some Beatles songs.

b. syntax (Keith (played (some (Beatles songs))))

c. semantics: (some (Beatles songs)) (λxe. Keith played x)

2.2 Quantification and lexical semantics require a many sorted logic

Let us point out that this Fregean view with a single sort prevents a proper
treatment of quantification. Frege managed to express universal quantifiers (de-
terminers like “each” or “every”) and existential quantifiers like “a” or “some”
restricted to a sort, set or type A by using the following equivalences:

(10) a. ∀x ∈M P (x) ≡ ∀x (M(x)⇒ P (x))

b. ∃x ∈M P (x) ≡ ∃x (M(x)&P (x))

This treatment does not apply to other quantifiers like percentage or vague
quantifiers:

(11) a. for a third of the x ∈M P (x) 6≡ ∀x (M(x)⇒ P (x))

b. for fewx ∈M P (x) ¬ ≡ ∃x (M(x)&P (x))

Furthermore, as said in the first point of the previous subsection, we would
like to have a logical form or a reference for determiner phrases, even though the
main predicate is still to come.

(12) a. The Brits

b. The Brits love Australia, more than any other country except their
own, according to an online survey for London’s Daily Telegraph.

(13) a. Most students.

b. Most students will still be paying back loans from their university
days in their 40s and 50s.

This question is related to lexical semantics: what classes are natural, what
sorts do we quantify over, what can possibly be the comparison classes that
have not been uttered, what are the sorts of complement a verb admit, what
verbs can apply to a given sort of objects or of subjects? Our treatment of
determiner phrases takes place in a framework that we initially designed for
lexical semantics. But let us first speak about an alternative view of determiners
and quantifiers.

3 Hilbert operators, quantifiers, and determiners

After the quantifier the one and unique individual such that P . . . introduced
by Russell for definite descriptions, Hilbert (with Ackerman and Bernays) inten-
sively used generic elements for quantification, the study of which culminated
in the second volume of Grundlagen der Mathematik [10]. It should be stressed
that these operators are introduced and described here with natural language
examples, which is not so common in Hilbert’s writings. We shall first present
the ε operator which recently lead to important work in linguistics in particular
with von Heusinger’s work. [6,27,28]

3.1 An ancestor to Hilbert operators: Russell’s iota for definite
descriptions

The first step due to Russell was to denote by ιx. F the unique individual
enjoying the property F in a definite description like the first sentence below
and to remain undetermined when existence and uniqueness do not hold. [25]

(14) The present president of France was born in Rouen.

(existence and uniqueness hold)

(15) The present king of France was born in Pau.

(existence fails)

(16) The present minister was born in Barcelona.

(uniqueness fails)

Of course this operator is not handy from a logical or formal point of view
since the negation of “there exists a unique x such that P (x)” is “either no x
or more than two x enjoys ¬P”: its negation is clearly inelegant and indeed
there are no well behaved deduction rules for such an operator. However, as
observed by von Heusinger the uniqueness even when using the definite article is
not really mandatory: it should refer to a salient element in the speaker’s view,
and in many examples the definite description is neither unique nor objectively
salient, we shall come back to this point at the end of the present paper.

3.2 Hilbert epsilon and tau

From this idea, Hilbert introduced an individual existential term defined from
a formula: given a formula F (x) with a free variable x one defines the term
εx. F in which the occurrences of x in F are bound (this is the original notation,
nowadays this term is often written as εx. F). Whenever some element, say a,
enjoys F , then the epsilon term εx. F enjoys F .

Dually, Hilbert introduced a universal generic element τx. F , which corre-
sponds to the generic elements used in mathematical proofs: to establish that a
property P holds for every integer, the proof usually starts with “Let n be an
integer, . . . ” where n has no other property than being an integer. Consquently
when this generic integer has the property, so does any integer. The τ -term
τx. F is the dual of the ε-term εx. F : τx. F enjoys the property F when every
individual does.

More formally, given a first language L (constants, variables, function sym-
bols, relation symbols, the later two with an arity) here is a precise definition
of the epsilon terms and formulae. Terms and formulae are defined by mutual
recursion:

– Any constant in L is a term.
– Any variable in L is a term.
– f(t1, . . . , tp) is a term provided each ti is a term and f is a function symbol

of arity p
– εxA is a term if A is a formula and x a variable and any free occurrence of
x in A is bound by εx

– τxA is a term if A is a formula and x a variable and any free occurrence of
x in A is bound by τx

– s = t is a formula whenever s and t are terms.
– R(t1, . . . , tn) is a formula provided each ti is a term and R is a relation

symbol of arity n
– A&B, A ∨B, A⇒ B are formulae if A and B are formulae
– ¬A is formula if A is a formula.

As the example below shows, a formula of first order logic can be recursively
translated into a formula of the epsilon calculus, without surprise. Admittedly
the epsilon translation of a usual formula may look quite complicated — at least
we are not used to them:2

(17) a. ∀x ∃y P (x, y)

b. = ∃y P (τxP (x, y), y)

c. = P (τxP (x, εyP (τxP (x, y), y)), εyP (τxP (x, y), y))

The deduction rules for τ and ε are the usual rules for quantification:

2 We shall not use such formulae as semantical representations: indeed, they are even
further away from the syntactical structure than usual first order formulae.

– From A(x) with x generic in the proof (no free occurrence of x in any hy-
pothesis), infer A(τx. A(x))

– From B(c) infer B(εx. B(x)).

The other rules can be found by duality:

– From A(x) with x generic in the proof (no free occurrence of x in any hy-
pothesis), infer A(εx. ¬A(x))

– From B(c) infer B(τx. ¬B(x))

Hence we have:

F (τx. F (x)) ≡ ∀x.F (x)

F (εx. F (x)) ≡ ∃x. F (x)

τx.A(x) = εx.¬A(x)

Because of the latest equation due to the classical negation (∀x. P (x) ≡
¬∃x. ¬P (x)), only one of these two operators τ and ε is needed: commonly
people choose the ε operator.

This logic is known as the epsilon calculus.

Hilbert turned these symbols into a mathematically satisfying theory, since
it allows to fully describe quantification with simple rules. The first and second
epsilon theorem basically say that this is an alternative formulation of first order
logic.

First epsilon theorem When inferring a formula C without the ε symbol nor
quantifiers from formulae Γ not involving the ε symbol nor quantifiers the
derivation can be done within quantifier free predicate calculus.

Second epsilon theorem When inferring a formula C without the ε symbol
from formulae Γ not involving the ε symbol, the derivation can be done
within usual predicate calculus.

In this way, Hilbert provided the first correct proof of Herbrand’s theorem
(much before mistakes where found and solved by Goldfarb) and a way to prove
the consistence of Peano’s arithmetic at the same time as Gentzen did.

Later on Asser [2] and Leisenring [12] have been working on epsilon calculus
in particular for having models and completeness, and for cut-elimination. Nev-
ertheless, as one reads on Zentralblatt math these results are misleading as well
as the posterior corrections — see in particular [4,17] and the related reviews.
Only the proof theoretical aspects of the epsilon calculus seem to have been
further investigated with some success in particular by Moser and Zach [21] and
Mints [18]. 3

3 While correcting these lines before printing, we just learnt that this great logician
Grigori (Grisha) Mints passed away; sincere condolences to his family, friends and
to the logic community.

3.3 Hilbert’s operators in natural language

In Hilbert’s book the operators ε and τ are explained with natural language
examples, but a very important and obvious linguistic property is not properly
stated: the εxF has the type (both in the intuitive and in the formal sense) of a
noun phrase, and is meant to be the argument of a predicate (for instance the
subject of a verb), thus being a suppositio in the medieval sense. [5,11]

Nowadays there has been a renewed interest in the epsilon formulation of
quantification, in particular by von Heusinger. He uses a variant of the epsilon for
definite descriptions, leaving out the uniqueness of the iota operator of Russell,
one reason being that the context often determines a unique object, the most
salient one. We call it a “variant” because it is not clear whether one still has the
equivalence with ordinary existential quantification: von Heusinger constructs an
epsilon term whenever there is an expression like a man or the man but it is not
clear how one asserts that man(εx. man(x)). The distinction between ε and η is
that the former selects the most salient possible referent, while the later selects
a new one.

3.4 Hilbert’s operators, beyond usual logic

The study of epsilon operators focused on usual logic, typically first order clas-
sical logic within this extended language. Epsilon and the epsilon substitution
method were part of Hilbert’s program to provide finistic consistency proofs for
arithmetic (and even analysis, using second order epsilon). Hence, although by
that time people were probably aware that it goes beyond usual first order, none
spoke about this extension.

Here is an extremely simple example of a formula of the epsilon calculus
without an equivalent in first order logic, that von Heusinger and us use for
natural language semantics as explained below:

F = P (εxQ(x))

This formula, according to the aforementioned epsilon rules, entails G =
P (εxP (x)) (i.e. ∃x. P (x)), but it does not entails H = Q(εxQ(x)) (i.e. ∃x. Q(x)).
Of course, if one further assumes H, then the formulae F and H entail, according
to epsilon rules, the P&Q(εx. P&Q) that is ∃x. P&Q(x) = ∃x.P (x)&Q(x). But
there is no first order formula equivalent to this simple epsilon formula F .

4 Determiners in the Montagovian generative lexicon

The standard view in Montague semantics is in perfect accordance with Frege’s
view of entities: a single universe gathers all entities. Hence a definite or indefinite
determiner picks one element from this single sorted universe and a quantifier
ranges over this single universe. As said in subsections 2.2 and 2.1, this view of
quantification does not really match our linguistic competence nor our cognitive
abilities.

This question is related to another part of semantics, namely lexical seman-
tics. If one wants to integrate some lexical issues in a compositional framework,
one needs sorts or many base types for entities, in order to specify what should
be the nature of the arguments of a given word. This question is related to the
type of the semantical constants: what should be the domain of a predicate,
what are the relations between these logical constants? Observe, for instance
that in Montague semantics a verb phrase and a common noun have the very
same type e→ t, that events are standard entities, and that there is no way to
have privileged relation between predicates and arguments: for instance a “book”
can be “enjoyed, disliked, read, written, printed, bound, burnt, lost,...”

As the two questions are linked, we here present a compositional framework
for semantics that accounts for both lexical issues and for the present question
of determiners and quantifiers.

4.1 The Montagovian generative lexicon

As observed above, it would be more accurate to have many individual base
types rather than just e. Thus, the application of a predicate to an argument
may only happen when it makes sense. Some sentences should be ruled out
like “The chair barks.” or “Their five is running.”, and this is quite easy when
there are several types for individuals: the lexicon can specify “barks” and “is
running” only apply to individuals of type “animal”. Nevertheless, such a type
system needs to incorporate some flexibility. Indeed, in the context of a football
match, the second sentence makes sense: “their five” can be the player wearing
the 5 shirt and who, being “human”, is an “animal” that can “run”.

Our system is called the Montagovian Generative Lexicon or ΛTyn. Its
lambda terms extend the simply typed ones of Montague semantics above. In-
deed, we use second order lambda terms from Girard’s system F (1971) [9].

The types of ΛTynare defined as follows:

– Constants types ei and t, as well as type variables α, β, . . . are types.
– Πα. T is a type whenever T is a type and α a type variable . The type

variable may or may not occur in the type T .
– T1 → T2 is a type whenever T1 and T2 are types.

The terms of ΛTyn, are defined as follows:

– A variable of type T i.e. x : T or xT is a term, and there are countably many
variables of each type.

– In each type, there can be a countable set of constants of this type, and a
constant of type T is a term of type T . Such constants are needed for logical
operations and for the logical language (predicates, individuals, etc.).

– (f t) is a term of type U whenever t is a term of type T and f a term of
type T → U .

– λxT . τ is a term of type T → U whenever x is variable of type T , and t a
term of type U .

– t{U} is a term of type T [U/α] whenever τ is a term of type Πα. T , and U
is a type.

– Λα.t is a term of type Πα.T whenever α is a type variable, and t : T a
term without any free occurrence of the type variable α in the type of a free
variable of t.

The later restriction is the usual one on the proof rule for quantification in
propositional logic: one should not conclude that F [p] holds for any proposition
p when assuming G[p] — i.e. having a free hypothesis of type G[p].

The reduction of the terms in system F or its specialised version ΛTyn is
defined by the two following reduction schemes that resemble each other:

– (λx.τ)u reduces to τ [u/x] (usual β reduction).
– (Λα.τ){U} reduces to τ [U/α] (remember that α and U are types).

As [8,9] showed reduction is strongly normalising and confluent every term
of every type admits a unique normal form which is reached no matter how one
proceeds. This has a good consequence for us, see e.g. [20, Chapter 3]:

ΛTyn terms as formulae of a many-sorted logic If the predicates,
the constants and the logical connectives and quantifiers are the ones
from a many sorted logic of order n (possibly n = ω) then the closed
normal terms of ΛTyn of type t unambiguously correspond to many sorted
formulae of order n.

Polymorphism allows a factored treatment of phenomena that treat uniformly
families of types and terms. An interesting example is the polymorphic conjunc-
tion for copredication: whenever an object x of type ξ can be viewed both:

– as an object of type α (via a term f0 : ξ → α) to which a property Pα→t

applies
– and as an object of type β to which a property Qβ→t applies (via a term
g0 : ξ → β),

the fact that x enjoys P&Q can be expressed by the unique polymorphic term
(see explanation in figure 4.1):

(18) &Π = ΛαΛβλPα→tλQβ→tΛξλxξλfξ→αλgξ→β .
(&t→t→t (P (f x))(Q (g x)))

The lexicon provides each word with:

– A main λ-term of ΛTyn, the “usual one” specifying the argument structure
of the word.

– A finite number of λ-terms of ΛTyn (possibly none) that implement meaning
transfers. Each meaning transfer is declared in the lexicon to be flexible (f)
or rigid (r).

Let us see how such a lexicon works. When a predication requires a type ψ
(e.g. Place) while its argument is of type σ (e.g. Town) the optional terms in the
lexicon can be used to “convert” a Town into a Place.

Fig. 3. Polymorphic and: P (f(x))&Q(g(x)) [x:ξ, f :ξ → α, g:ξ → β].

Fig. 4. A sample lexicon

word principal λ-term optional λ-terms rigid/flexible

Liverpool lplT IdT : T → T (f)
t1 : T → F (r)
t2 : T → P (f)
t3 : T → Pl (f)

spread out spread out : Pl → t

voted voted : P → t

won won : F → t

where the base types are defined as follows: T town
P people
Pl place

(19) a. Liverpool is spread out.

b. This sentence leads to a type mismatch spread outPl→t(lplT)), since
“spread out” applies to “places” (type Pl) and not to “towns” as
“Liverpool”. This type conflict is solved using the optional term
tT→Pl
3 provided by the entry for “Liverpool”, which turns a town

(T) into a place (Pl) spread outPl→t(tT→Pl
3 lplT)) — a single op-

tional term is used, the (f)/ (r)difference is useless.

(20) a. Liverpool is spread out and voted (last Sunday).

b. In this example, the fact that “Liverpool” is “spread out” is derived
as previously, and the fact “Liverpool” “voted” is obtained from the
transformation of the town into people, which can vote. The two can
be conjoined by the polymorphic “and” defined above in 18 (&Π)
because these transformations are flexible: one can use both of them.
We can make this precise using only the rules of our typed calculus.
The syntax yields the predicate (&Π(is spread out)Pl→t(voted)P→t)
and consequently the type variables should be instantiated by α :=
Pl and β := P and the exact term is

&Π{Pl}{P}(is spread out)Pl→t(voted)P→t

which reduces to:

Λξλxξ λfξ→αλgξ→β(&t→t)→t (is spread out (f x))(voted (g x))).

Syntax also says this term is applied to “Liverpool”. which forces the
instantiation ξ := T and the term corresponding to the sentence is
after some reduction steps,
λfT→PlλgT→P (& (is spread out (f lplT))(voted (g lplT)))). For-
tunately the optional λ-terms t2 : T → P and t3 : T → Pl are
provided by the lexicon, and they can both be used, since none of
them is rigid. Thus we obtain, as expected
(& (is spread outPl→t (tT→Pl

3 lplT))(votedPl→t (tT→P
2 lplT)))

(21) a. # Liverpool voted and won (last Sunday).

b. This third and last example is rejected as expected. Indeed, the trans-
formation of the town into a football club prevents any other trans-
formation (even the identity) to be used with the polymorphic “and”
(&Π) defined above in 18. We obtain the same term as above, with
won instead of is spread out:
λfT→PlλgT→P (& (won (f lplT))(voted (g lplT)))) and the lexicon
provides the two morphisms that would solve the type conflict, but
one of them is rigid, i.e. we can solely use this one. Consequently no
semantics can be derived from this sentence, which is semantically
invalid.

The difference between our system and those of [13,1] does not come down
to the type systems, which are quite similar, but in the architecture which is,
in our case, rather word driven than type driven. The optional morphisms are
anchored in the words, and do not derive from the types. This is supported in

our opinion by the fact that some words with the very same ontological type
(like French nouns “classe” and “promotion”, that are groups of students in
the context of teaching) may undergo different coercions (only the first one can
mean a classroom). This rather lexicalist view goes well with the present work
that proposes to have specific entries for deverbals, that are derived from the
verb entry but not automatically.

This system has been implemented as an extension to the Grail parser [19],
with λ-DRT instead of formulae as λ-terms. It works fine once the semantical
lexicon has been typeset.4

We already explored some of the compositional properties (quantifiers, plu-
rals and generic elements,....) of our Montagovian generative lexicon as well as
some of the lexical issues (meaning transfers, copredication, fictive motion, de-
verbals, ...) [3,23,24,15,22].

4.2 Determiners as typed epsilon operators

As we saw there are many base types that are sorts of the many sorted logic and
even more complex types over which one may quantify, a fairly natural semantics
for determiners is to pick one element in its sort.

For instance, consider the indefinite determiner “a”. It should be seen as
an operator acting on a noun phrase without determiners that outputs some
individual. In order to make things correct and precise, consider the noun phrase,
“a cat” where “a” acts upon “cats”, and think about the possible types of “a”,
which clearly it depend on what “cat” is. Is cat a type or a property satisfied by
“cats” among a larger class or type?

1. If “cat” is a type the constant for “a” should be of type Πα. α.
2. If “cat” is a property, say of a larger type “animal”, then this constant

should take a property of animals of type animal→ t and yield a cat. Now
assume that the property is a more complex property P “cat which lives
nearby”, what should “a” do? It should apply to a property of animals like
P and yields an entity x that enjoys P . Because x enjoys P its type should
be “animal”. In this case the type of the constant corresponding to P should
be Πα. (α → t) → α, hence the type does not guarantee by itself that x
enjoys P and consequently a presupposition P (a cat) has to be added.

We deliberately chose to use option 2 and only this one. Firstly, we cannot
avoid this case, because not every property that a determiner may apply to can
be assumed to be a type, there would be too many of them. Secondly, the first
option can be encoded within the second option. Indeed if there is a type cat one
can consider a predicate “being a cat”. Indeed, unsurprisingly, the semantics of
predicates and the one of quantifiers and determiners are closely related.

Usually, a determiner or a quantifier applies to one (“everyone”) or two
(“a”) predicates and yields a proposition. A Hilbert operator combines with one

4 Syntactical categories are learnt from annotated corpora, but semantical typed λ-
terms cannot yet be learnt, as discussed in the conclusion.

predicate and yields a term, an entity. In a many sorted and typed system like
ΛTyn what is the type of a predicate? The standard type for a predicate is e→ t,
but given the many sorts ei we could have predicates that apply to other entity
type than e. Is “cat” a property of individuals of type “animal” if such a type
exists or is it a property that may apply to any entity, and which is constantly
false outside of the type “animal”? If the domain of a predicate is ei and not e
(the type of all entities), a predicate P ei→t canonically extends to a predicate

P
e→t

by saying it never holds outside of ei. Conversely a property like cat whose
domain is some ei (e.g “animal”) can be restricted to any subtype of ei, but in
case the subtype of ei does not include all “cats” there dis no way to recover
the initial predicate “cat” that applies to animals.

Now that we have a proper representation of a predicate in the type system,
one may wonder how a type can be reflected as a predicate. For instance what
should be the type of a predicate associated with a type, like “being a cat” if
“cat” is a type. Natural domains for the such a predicate could be “animals”,
“mammals”, “felines”,. . . As it is difficult to chose, let us decide that the domain
of a given predicate associated with a type always is the largest, the collection of
all possible entities e which can be restricted as indicated above. Hence “being
of type α” that we write α̂ is of type e→ t

So far we have not said what are the base type which intervenes in represent-
ing predicates and quantifiers. We need several of them, to express selectional
restrictions . Asher [1] uses a dozen of ontological types (events, physical ob-
jects, human beings, information, etc.) Luo [14] suggests using a flat ontology
with common nouns (there are thousands of them) as base types. With Mery we
suggested to consider classifiers (100–200) as in languages that have classifiers
(sign language, Chinese, Japanese) [16].

As said above the lexicon associate the constant ε of type Πα. (α→ t)→ α
to the indefinite article — that is an Hilbert/von Heusinger ε adapted to the
typed case. Hence the indefinite article is a polymorphic ε that specialises to a
type/sort {ei} and applies to a predicate P of type ei → t yielding an entity of
type ei. Let us consider an extremely simple example: (ani stands for the type
of animals):

(22) a. A cat sleeps (under your car).

b. term for “a”: ε : Πα. ((α→ t)→ α)

c. term for “sleep”: (λx. sleepsani→t(x))

d. term for “cat”: (λx. catani→t(x))

e. syntax: ((a→ cat)← sleeps)

f. semantics: sleeps(a cat)

g. (λx. sleepsani→t(x))(εΠα. ((α→t)→α)catani→t)

h. (λx. sleeps(x))(εΠα. ((α→t)→α){ani}catani→t)

i. sleepsani→t(εΠα. ((α→t)→α){ani}catani→t) : t Logical Form

j. cat(εΠα. ((α→t)→α){ani}catani→t) : t Presupposition

In order to apply “a” to “cat” a predicate of type ani → t the ε must be
specialised to α = ani. The verb “sleeps” can apply to result of “a cat” which is
of type ani, and the final term (22h) is of type t as expected — as explained in
section provided there actually exists a cat this epsilon formula with out any first
order equivalent (see subsection 3.4) can be understood as ∃x : ani sleep(x).
Our analysis ought to be completed: nothing tells us that cat(εcat) (∃x. cat(x)),
i.e. that a “cat” actually exists ... and this needs to be added as a presupposition.
In fact, such a presupposition is added as soon as a determiner or an existential
quantifier appears: when an utterance “a cat” appears, the existence of the
corresponding entity ought to be asserted.

We use the word “presupposition” with the same sense as Asher [1] when he
calls “presupposition” a selectional restriction: a verb like “sleeps” presupposes
that its subject is an “animal”. This really is some sort of presupposition, indeed
it is quite difficult to deny a type judgement, both formally and linguistically:

– Formally: To refute (a:A) is not easy. Indeed the complement of a type is
not a type, i.e. the negation of a:A is not a:¬A — as opposed to Ã(x) whose
negation is easily formulated as ¬Ã(x)

– Linguistically: If one says “Rex is sleeping in the garden.” the reply: — “No,
Rex is not an animal”, that refutes a typing judgment (Rex:ani) is difficult
to utter out of the blue and needs to be better introduced and justified. On
the other hand it is easy to utter an answer that refutes the proposition: —
“No, Rex is not sleeping, he just left.”

4.3 A rather satisfying account of determiners

We started with three objections to the standard account of determiners in
Montague semantics. We proposed a model that avoids those three problems:

1. Epsilon are individuals that can be interpreted as such (even though their
interpretation does not ensure completeness of the epsilon calculus).

2. With epsilon terms, the syntactical structure and the structure of the logical
form match.

3. For an indefinite determiner phrase, which corresponds to an existential
statement, there is not anymore an irrelevant symmetry between the noun
(topic, theme) and the verb phrase (comment, rheme).

As in von Heusinger’s work, one can give a similar account of definite descrip-
tions, the main difference being at the interpretation level: the definite descrip-
tion should be interpreted as the most salient entity in the context. This entity
is usually introduced by an indefinite description, that is another epsilon term
defined from the same property (from the same logical formulae). The difference
between a definite description and an indefinite determiner phrase is that the
former one refers to an existing discourse referent while the later one introduces
a new discourse referent.

This also provides a natural account of Evan’s E-type pronoun [7]: the seman-
tics of the pronoun “he” in the example below can be copied from its antecedent
to obtain the semantics of these two sentences.

(23) A man entered the conference hall. The man sat nearby the window.

(24) A man1 entered the conference hall and sat nearby the window. A man2

(6= man1) told him that he just missed two slides.

(25) A man entered the conference hall. He sat nearby the window.

Universal quantification can be treated just like indefinite determiners. A
universally quantified NP corresponds to the term τx.P (x) = εx.¬(P (x)) (c.f.
section 3). The τ -terms are actually much easier to interpret than the ε-terms:
it’s a generic entity with respect to property P . Furthermore one can introduce
operators for generalised and vague quantifiers like “most”, “few”, “a third of ”
etc.

The approach to existential quantification is rather similar to choice functions
that have been used in formal semantics, especially in Steedman recent book
[26], who also enjoy the three properties above. There are nevertheless some
differences:

– The syntax, the definition of epsilon terms, is simple. I think different choice
functions are needed for all the formulae, while a single epsilon is enough
(and possibly already too much).

– Universal quantification can be treated un just the same way with τx.P (x) =
εx.¬(P (x)) and even generalised and vague quantifiers can be treated that
way.

Of course the challenging difficulty of epsilon is to find the proper notion of
model which would give a completeness theorem for all the formulae including
the one that do not have a first order equivalent.

5 Conclusion

This work is an investigation of the outcomes of the Montagovian generative lex-
icon, which was designed for lexical semantics, in formal semantics. The many
sorted compositional framework seems to be a rich setting to explore some new
direction like a typed and richer view of epsilon terms as the semantics of deter-
miner phrases.

We did not elaborate on scope issues: using freely the epsilon and tau oper-
ators is a form of underspecification. It involves formulae that are not part of
first order logic, like: R(εxP (x), τzQ(z)).

As we showed here, this refinement of Montague semantics draws intriguing
connections between type theory — say a judgement a : A — and many sorted
logic — a formula Ã(a): we hope to understand better those issues in future
work.

As far as quantification is concerned, we would like to better understand
formulae of the epsilon calculus that do not have any equivalent in usual logic
and any proper notion of model, complete if possible, would help a lot.

We presently are doing psycholinguistic experiments to see how do we natu-
rally interpret determiner phrases, by confronting sentence to pictures in which

they can be true or not, measuring reaction time and recording eye tracking.
This will possibly confirm or refute the soundness of some cognitive arguments.

The possibly to model with Hilbert operators generalised quantifiers like “a
third of ” and vague quantifiers like “many” if of course very appealing, and
we already made some advances in this direction. [23] Nevertheless we should
not be too ambitious: basic epsilon terms already goes beyond usual first order
logic, and although they do have deduction rules they lack proper models. So the
situation is probably much more complicated with Hilbert terms for generalised
quantifiers, which do not even have proper deductions rules. Hence such terms are
a natural and appealing but mathematically difficult approach to quantification
related to the semantics of determiner phrases.

Thanks to the anonymous colleagues who provided some comments on this pa-
per and to Michele Abrusci, Nicholas Asher, Francis Corblin, Ulrich Kohlenbach,
Zhaohui Luo, Richard Moot, Fabio Pasquali for helpful discussions.

References

1. Asher, N.: Lexical Meaning in context – a web of words. Cambridge University
press (2011)

2. Asser, G.: Theorie der logischen auswahlfunktionen. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik (1957)

3. Bassac, C., Mery, B., Retoré, C.: Towards a Type-Theoretical Account of Lexical
Semantics. Journal of Logic Language and Information 19(2) (April 2010) 229–245

4. Canty, J.T.: Zbl0327.02013 : review of “on an extension of Hilbert’s second ε-
theorem” by T. B. Flanagan (jsl, 1975)

5. de Libera, A.: La querelle des universaux de Platon à la fin du Moyen Âge. Des
travaux. Seuil (1996)

6. Egli, U., von Heusinger, K.: The epsilon operator and E-type pronouns. In Egli, U.,
Pause, P.E., Schwarze, C., von Stechow, A., Wienold, G., eds.: Lexical Knowledge
in the Organization of Language. Benjamins (1995) 121–141

7. Evans, G.: Pronouns, quantifiers, and relative clauses (i). Canadian Journal of
Philosophy 7(3) (1977) 467–536

8. Girard, J.Y.: Une extension de l’interprétation de Gödel à l’analyse et son applica-
tion: l’élimination des coupures dans l’analyse et la théorie des types. In Fenstad,
J.E., ed.: Proceedings of the Second Scandinavian Logic Symposium. Volume 63 of
Studies in Logic and the Foundations of Mathematics., Amsterdam, North Holland
(1971) 63–92

9. Girard, J.Y.: The blind spot – lectures on logic. European Mathematical Society
(2011)

10. Hilbert, D., Bernays, P.: Grundlagen der Mathematik. Bd. 2. Springer (1939)
Traduction française de F. Gaillard, E. Guillaume et M. Guillaume, L’Harmattan,
2001.

11. Kneale, W., Kneale, M.: The development of logic. 3rd edn. Oxford University
Press (1986)

12. Leisenring, A.C.: Mathematical logic and Hilbert’s ε symbol. University Mathe-
matical Series. Mac Donald & Co. (1967)

13. Luo, Z.: Contextual analysis of word meanings in type-theoretical semantics. In
Pogodalla, S., Prost, J.P., eds.: LACL. Volume 6736 of LNCS., Springer (2011)
159–174

14. Luo, Z.: Common nouns as types. In Béchet, D., Dikovsky, A.J., eds.: LACL.
Volume 7351 of Lecture Notes in Computer Science., Springer (2012) 173–185

15. Mery, B., Moot, R., Retoré, C.: Plurals: individuals and sets in a richly typed se-
mantics. In Yatabe, S., ed.: Logic and Engineering of Natural Language Semantics
10 (LENLS 10), Keio University (2013) 143–156 ISBN 978-4-915905-57-5.

16. Mery, B., Retoré, C.: Semantic types, lexical sorts and classifiers. In Sharp, B.,
Zock, M., eds.: 10th International Workshop on Natural Language Processing and
Cognitive Science, Marseilles (September 2013)

17. Mints, G.: Zbl0381.03042: review of “cut elimination in a Gentzen-style ε-calculus
without identity” by Linda Wessels (Z. math Logik Grundl. Math., 1977)

18. Mints, G.: Cut elimination for a simple formulation of epsilon calculus. Ann. Pure
Appl. Logic 152(1-3) (2008) 148–160

19. Moot, R.: Wide-coverage French syntax and semantics using Grail. In: Proceedings
of Traitement Automatique des Langues Naturelles (TALN), Montreal (2010)

20. Moot, R., Retoré, C.: The logic of categorial grammars: a deductive account of
natural language syntax and semantics. Volume 6850 of LNCS. Springer (2012)

21. Moser, G., Zach, R.: The epsilon calculus and herbrand complexity. Studia Logica
82(1) (2006) 133–155

22. Real, L., Retoré, C.: Deverbal semantics and the Montagovian generative lexicon
ΛTyn. Journal of Logic, Language and Information (2014) 1–20

23. Retoré, C.: Variable types for meaning assembly: a logical syntax for generic noun
phrases introduced by ”most”. Recherches Linguistiques de Vincennes 41 (2012)
83–102

24. Retoré, C.: Sémantique des déterminants dans un cadre richement typé. In
Morin, E., Estève, Y., eds.: Traitement Automatique du Langage Naturel, TALN
RECITAL 2013. Volume 1., ACL Anthology (2013) 367–380

25. Russell, B.: On denoting. Mind 56(14) (1905) 479–493
26. Steedman, M.: Taking Scope: The Natural Semantics of Quantifiers. MIT Press

(2012)
27. von Heusinger, K.: Definite descriptions and choice functions. In Akama, S., ed.:

Logic, Language and Computation, Kluwer (1997) 61–91
28. von Heusinger, K.: Choice functions and the anaphoric semantics of definite nps.

Research on Language and Computation 2 (2004) 309–329

	Typed Hilbert Epsilon Operators and the Semantics of Determiner Phrases – invited lecture –

