Abstract
I define a generalization of linear indexed grammars that is equivalent to simple context-free tree grammars in the same way that linear indexed grammars are equivalent to tree-adjoining grammars.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A.V.: Indexed grammars—an extension of context-free grammars. Journal of the Association for Computing Machinery 15(4), 647–671 (1968)
Engelfriet, J., Schmidt, E.M.: IO and OI, part I. The Journal of Computer and System Sciences 15(3), 328–353 (1977)
Engelfriet, J., Heyker, L.: The string generating power of context-free hypergraph grammars. Journal of Computer and System Sciences 43(2), 328–360 (1991)
Gazdar, G.: Applicability of indexed grammars to natural languages. In: Reyle, U., Rohrer, C. (eds.) Natural Language Parsing and Linguistic Theories, pp. 69–94. Reidel, Dordrecht (1988)
Gómez-RodrÃguez, C., Kuhlmann, M., Satta, G.: Efficient parsing of well-nested linear context-free rewriting systems. In: Proceedings of Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), Los Angeles, USA, pp. 276–284 (2010)
de Groote, P., Pogodalla, S.: On the expressive power of abstract categorial grammars: Representing context-free formalisms. Journal of Logic, Language and Information 13(4), 421–438 (2004)
Guessarian, I.: Pushdown tree automata. Mathematical Systems Theory 16(1), 237–263 (1983)
Harkema, H.: A characterization of minimalist languages. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 193–211. Springer, Heidelberg (2001)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)
Hotz, G., Pitsch, G.: On parsing coupled-context-free languages. Thoretical Computer Science 161(1-2), 205–253 (1996)
Joshi, A.K., Vijay-Shanker, K., Weir, D.: The convergence of mildly context-sensitive grammar formalisms. In: Sells, P., Shieber, S., Wasow, T. (eds.) Processing of Linguistic Structure, pp. 31–81. MIT Press, Cambridge (1991)
Kanazawa, M.: The convergence of well-nested mildly context-sensitive grammar formalisms. An invited talk given at the 14th Conference on Formal Grammar, Bordeaux, France (July 2009), http://research.nii.ac.jp/~kanazawa/talks/fg2009_talk.pdf
Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 312–325. Springer, Heidelberg (2009)
Kanazawa, M.: Second-order abstract categorial grammars. Lecture notes for a course taught at ESSLLI 2009 (2009), http://research.nii.ac.jp/~kanazawa/publications/esslli2009_lectures.pdf
Kanazawa, M.: Multi-dimensional trees and a Chomsky-Schützenberger-Weir representation theorem for simple context-free tree grammars. Journal of Logic and Computation (to appear)
Kepser, S., Mönnich, U.: Closure properties of linear context-free tree languages with an application to optimality theory. Theoretical Computer Science 354(1), 82–97 (2006)
Kepser, S., Rogers, J.: The equivalence of tree adjoining grammars and monadic linear context-free tree grammars. Journal of Logic, Language and Information 20(3), 361–384 (2011)
Knuth, D.E.: The Art of Computer Programming, Fundamental Algorithms, 3rd edn., vol. I. Addison-Wesley, Reading (1997)
Maletti, A., Engelfriet, J.: Strong lexicalization of tree adjoining grammars. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pp. 506–515. Association for Computational Linguistics (2012)
Michaelis, J.: Derivational minimalism is mildly context-sensitive. In: Moortgat, M. (ed.) LACL 1998. LNCS (LNAI), vol. 2014, pp. 179–198. Springer, Heidelberg (2001)
Michaelis, J.: Transforming linear context-free rewriting systems into minimalist grammars. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 228–244. Springer, Heidelberg (2001)
Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting systems. Theoretical Computer Science 223(1-2), 87–120 (1999)
Rounds, W.: Mappings and grammars on trees. Mathematical Systems Theory 4(3), 257–287 (1970)
Salvati, S.: Encoding second order string ACG with deterministic tree walking transducers. In: Wintner, S. (ed.) Proceedings of FG 2006: The 11th Conference on Formal Grammar, pp. 143–156. FG Online Proceedings, CSLI Publications (2007)
Seki, H., Kato, Y.: On the generative power of multiple context-free grammars and macro grammars. IEICE Transactions on Information and Systems E91-D(2), 209–221 (2008)
Steedman, M.: The Syntactic Process. MIT Press, Cambridge (2000)
Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free grammars. Mathematical Systems Theory 27(6), 511–546 (1994)
Vijay-Shanker, K., Weir, D.J.: Parsing some constrained grammar formalisms. Computational Linguistics 19(4), 591–636 (1993)
Vijayashanker, K.: A Study of Tree Adjoining Grammars. Ph.D. thesis, University of Pennsylvania (1987)
Weir, D.J.: Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D. thesis, University of Pennsylvania (1988)
Weir, D.J.: Linear context-free rewriting systems and deterministic tree-walking transducers. In: Proceedings of the 30th Annual Meeting of the Association for Computational Linguistics, pp. 136–143 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kanazawa, M. (2014). A Generalization of Linear Indexed Grammars Equivalent to Simple Context-Free Tree Grammars. In: Morrill, G., Muskens, R., Osswald, R., Richter, F. (eds) Formal Grammar. FG 2014. Lecture Notes in Computer Science, vol 8612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44121-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-662-44121-3_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44120-6
Online ISBN: 978-3-662-44121-3
eBook Packages: Computer ScienceComputer Science (R0)