Skip to main content

A Generalization of Linear Indexed Grammars Equivalent to Simple Context-Free Tree Grammars

  • Conference paper
Formal Grammar (FG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8612))

Included in the following conference series:

  • 680 Accesses

Abstract

I define a generalization of linear indexed grammars that is equivalent to simple context-free tree grammars in the same way that linear indexed grammars are equivalent to tree-adjoining grammars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A.V.: Indexed grammars—an extension of context-free grammars. Journal of the Association for Computing Machinery 15(4), 647–671 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  2. Engelfriet, J., Schmidt, E.M.: IO and OI, part I. The Journal of Computer and System Sciences 15(3), 328–353 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  3. Engelfriet, J., Heyker, L.: The string generating power of context-free hypergraph grammars. Journal of Computer and System Sciences 43(2), 328–360 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gazdar, G.: Applicability of indexed grammars to natural languages. In: Reyle, U., Rohrer, C. (eds.) Natural Language Parsing and Linguistic Theories, pp. 69–94. Reidel, Dordrecht (1988)

    Chapter  Google Scholar 

  5. Gómez-Rodríguez, C., Kuhlmann, M., Satta, G.: Efficient parsing of well-nested linear context-free rewriting systems. In: Proceedings of Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), Los Angeles, USA, pp. 276–284 (2010)

    Google Scholar 

  6. de Groote, P., Pogodalla, S.: On the expressive power of abstract categorial grammars: Representing context-free formalisms. Journal of Logic, Language and Information 13(4), 421–438 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guessarian, I.: Pushdown tree automata. Mathematical Systems Theory 16(1), 237–263 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Harkema, H.: A characterization of minimalist languages. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 193–211. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  10. Hotz, G., Pitsch, G.: On parsing coupled-context-free languages. Thoretical Computer Science 161(1-2), 205–253 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Joshi, A.K., Vijay-Shanker, K., Weir, D.: The convergence of mildly context-sensitive grammar formalisms. In: Sells, P., Shieber, S., Wasow, T. (eds.) Processing of Linguistic Structure, pp. 31–81. MIT Press, Cambridge (1991)

    Google Scholar 

  12. Kanazawa, M.: The convergence of well-nested mildly context-sensitive grammar formalisms. An invited talk given at the 14th Conference on Formal Grammar, Bordeaux, France (July 2009), http://research.nii.ac.jp/~kanazawa/talks/fg2009_talk.pdf

  13. Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 312–325. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Kanazawa, M.: Second-order abstract categorial grammars. Lecture notes for a course taught at ESSLLI 2009 (2009), http://research.nii.ac.jp/~kanazawa/publications/esslli2009_lectures.pdf

  15. Kanazawa, M.: Multi-dimensional trees and a Chomsky-Schützenberger-Weir representation theorem for simple context-free tree grammars. Journal of Logic and Computation (to appear)

    Google Scholar 

  16. Kepser, S., Mönnich, U.: Closure properties of linear context-free tree languages with an application to optimality theory. Theoretical Computer Science 354(1), 82–97 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kepser, S., Rogers, J.: The equivalence of tree adjoining grammars and monadic linear context-free tree grammars. Journal of Logic, Language and Information 20(3), 361–384 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Knuth, D.E.: The Art of Computer Programming, Fundamental Algorithms, 3rd edn., vol. I. Addison-Wesley, Reading (1997)

    Google Scholar 

  19. Maletti, A., Engelfriet, J.: Strong lexicalization of tree adjoining grammars. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pp. 506–515. Association for Computational Linguistics (2012)

    Google Scholar 

  20. Michaelis, J.: Derivational minimalism is mildly context-sensitive. In: Moortgat, M. (ed.) LACL 1998. LNCS (LNAI), vol. 2014, pp. 179–198. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Michaelis, J.: Transforming linear context-free rewriting systems into minimalist grammars. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 228–244. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting systems. Theoretical Computer Science 223(1-2), 87–120 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rounds, W.: Mappings and grammars on trees. Mathematical Systems Theory 4(3), 257–287 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  24. Salvati, S.: Encoding second order string ACG with deterministic tree walking transducers. In: Wintner, S. (ed.) Proceedings of FG 2006: The 11th Conference on Formal Grammar, pp. 143–156. FG Online Proceedings, CSLI Publications (2007)

    Google Scholar 

  25. Seki, H., Kato, Y.: On the generative power of multiple context-free grammars and macro grammars. IEICE Transactions on Information and Systems E91-D(2), 209–221 (2008)

    Article  Google Scholar 

  26. Steedman, M.: The Syntactic Process. MIT Press, Cambridge (2000)

    Google Scholar 

  27. Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free grammars. Mathematical Systems Theory 27(6), 511–546 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vijay-Shanker, K., Weir, D.J.: Parsing some constrained grammar formalisms. Computational Linguistics 19(4), 591–636 (1993)

    Google Scholar 

  29. Vijayashanker, K.: A Study of Tree Adjoining Grammars. Ph.D. thesis, University of Pennsylvania (1987)

    Google Scholar 

  30. Weir, D.J.: Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D. thesis, University of Pennsylvania (1988)

    Google Scholar 

  31. Weir, D.J.: Linear context-free rewriting systems and deterministic tree-walking transducers. In: Proceedings of the 30th Annual Meeting of the Association for Computational Linguistics, pp. 136–143 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanazawa, M. (2014). A Generalization of Linear Indexed Grammars Equivalent to Simple Context-Free Tree Grammars. In: Morrill, G., Muskens, R., Osswald, R., Richter, F. (eds) Formal Grammar. FG 2014. Lecture Notes in Computer Science, vol 8612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44121-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44121-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44120-6

  • Online ISBN: 978-3-662-44121-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics