
Learning Context Free Grammars with the
Finite Context Property:

A Correction of A. Clark’s Algorithm

Hans Leiß

Centrum für Informations- und Sprachverarbeitung
Universität München

Oettingenstr.67, 80538 München
leiss@cis.uni-muenchen.de??

Abstract. A. Clark[2] has shown that the class of languages which have
a context-free grammar whose nonterminals can be defined by a finite
set of contexts can be identified in the limit, given an enumeration of the
language and a test for membership. We show by example that Clark’s
algorithm may converge to a grammar that does not define the input
language. We review the theoretical background, provide a non-obvious
modification of the algorithm and prove its correctness.

1 Introduction

An important goal of structural linguistics was to analyse and describe a lan-
guage in terms of distributions. Given an alphabet Σ, the distribution of a word
v ∈ Σ∗ with respect to a language L ⊆ Σ∗ is the set

D(v) = {(u,w) ∈ Σ∗ ×Σ∗ | uvw ∈ L}

of all contexts where v appears in L. Having the same distribution with respect
to L is a congruence relation ≡L on Σ∗, the syntactic congruence. It partitions
Σ∗ into disjoint distribution classes [v] := {v′ ∈ Σ∗ | v ≡L v′}. By the My-
hill/Nerode theorem (c.f.[6]), ≡L has finitely many distribution classes if and
only if L is a regular language.

When the monoid operations of (Σ∗, ·, ε) are lifted to word sets by A ·B :=
{a · b | a ∈ A, b ∈ B} and 1 = {ε}, one obtains a monoid (P(Σ∗), ·, 1), which
is partially ordered by ⊆. The operation (u,w) � v := uvw of filling a context
(u,w) with a word v is lifted to context sets C and word sets A by

C �A := {(u,w)� v | (u,w) ∈ C, v ∈ A}.

With respect to L, each set of contexts C has a largest set of fillers, C/ = {v ∈
Σ∗ | C � {v} ⊆ L}, and each set A of words has a largest set of contexts,
A. = {(u,w) ∈ Σ∗×Σ∗ | {(u,w)}�A ⊆ L}. Notice that D(v) = {v}. =: v. and

{v}./ = {u | v. ⊆ u.} ⊇ {u | v. = u.} = [v].

?? A shorter version will appear in Morill e.a (eds) Proc. 19th Conf. on Formal Grammar
2014. The final publication is available at link.springer.com

The maps A 7→ A./ and C 7→ C/. are closure operators. Via a Galois-
connection between sets of words and sets of contexts, the partial orders of
closed sets of words and closed sets of contexts are anti-isomorphic. Clark[2]
defines a (syntactic) concept of L to be a pair 〈A,C〉 such that A. = C and
C/ = A. As here each component is closed and determines the other one, one
can use the component which is the better representation for a given purpose.

Note that L is itself a concept, namely L = {(ε, ε)}/, and can be represented
by a finite set of contexts. Suppose L has a context-free grammar G (in Chomsky
normal form, CNF) whose nonterminals N are concepts of L, i.e. N = N./ when
N is identified with {w ∈ Σ∗ | N ⇒∗G w}. A branching rule (N → AB) of G
then corresponds to N ⊇ AB, which is equivalent to N ⊇ (AB)./. If N,A,B
are represented by context sets C,D,E, this means C/ ⊇ (D/E/)./.

A. Clark[2] developed an algorithm to identify in the limit a CNF-grammar
for L from membership queries and an enumeration of L, provided L has a
CNF-grammar whose nonterminals can be defined by finite sets of contexts. The
basic idea is to extract from a finite subset E ⊆ L a finite set F of contexts
and a finite set K of subwords of L and relativize the operations ·. and ·/ of
taking all contexts resp. fillers with respect to L to ·F : P(Σ∗) → P(F) and
·K : P(F) → P(K) by AF := A. ∩ F and CK := C/ ∩K. Then there are only
finitely many relativized concepts of L, the pairs 〈A,C〉 ∈ P(K)× P(F) where
A = CK and C = AF ; using relativized closed sets C = CKF of contexts to
represent them, Clark builds a CNF-grammar G(K,L, F) by taking as branching
rules those triples (C → DE) where CK ⊇ (DKEK)FK . It is claimed that as K
and F increase, the grammars G(K,L, F) converge to a grammar for L.

But there is a technical problem: Clark’s criterion for C,D,E to form a
grammar rule is right when working with infinite filler sets, i.e. C/ ⊇ (D/E/)./,
since ·./ is a closure operator on P(Σ∗) and hence D/E/ ⊆ (D/E/)./. But
the criterion is not correct with finite filler sets, i.e. CK ⊇ (DKEK)FK is not
equivalent to CK ⊇ DKEK : although ·FK is a closure operator on P(K), it is
generally not the case that DKEK ⊆ (DKEK)FK , as the left hand side need
not be a subset of K. We give an example where Clark’s algorithm does not
converge to a grammar of the intended language.

Clark’s algorithm can be fixed by three modifications: (i) the criterion for
when three concepts C,D,E constitute a grammar rule has to be changed from
CK ⊇ (DKEK)FK to C ⊆ (DKEK)F . Since this works directly with context
sets, it emphasizes the importance of the Galois correspondence between word
sets and context sets. (ii) the criterion in the learning algorithm that makes the
hypothesis grammar shrink is weakened; the effect is that the learner cannot
converge to a grammar that defines a strict superset of the intended language.
(iii) since for our modified definition, L(G(K,L, F)) is neither antitone in K
nor monotone in F (as pointed out by R.Yoshinaka), we need a different line of
reasoning to show the convergence of the grammar inference process.

We prove that the modified algorithm indeed identifies in the limit the class
of context free languages with the finite context property. If we admit only
concepts whose context sets are closures of bounded context sets, the algorithm

has polynomial update time. Ryo Yoshinaka [8] has a different modification of
Clark’s algorithm where nonterminals need not be closed sets. This makes the
reasoning simpler, but results in a larger grammar.

2 Correspondence between word and context sets

Let Σ be a finite alphabet and L ⊆ Σ∗ a set of words. An L-context of A ⊆ Σ∗
is a word pair or context (u,w) such that uAw ⊆ L. The largest set of L-contexts
of A ⊆ Σ∗ is

A. := {(u,w) | {(u,w)} �A ⊆ L} = {(u,w) | uAw ⊆ L}. (1)

An L-filler of a set C ⊆ Σ∗ × Σ∗ of word pairs is a word w ∈ Σ∗ such that
uwv ∈ L for each (u, v) ∈ C. Let C � A := {uvw | (u,w) ∈ C, v ∈ A}. The
largest set of L-fillers of C ⊆ Σ∗ ×Σ∗ is

C/ := {v | C � {v} ⊆ L}. (2)

If C 6= ∅, C/ ⊆ Sub(L), where Sub(L) := {v ∈ Σ∗ | ∃u,w ∈ Σ∗ uvw ∈ L} is the
set of all subwords of L. The following equivalence (3) is easy to check:

Proposition 1. The functions ·. : (P(Σ∗),⊇) � (P(Σ∗ × Σ∗),⊆) : ·/ form a
Galois-connection, i.e., for all A ∈ P(Σ∗) and C ∈ P(Σ∗ ×Σ∗) we have

C/ ⊇ A ⇐⇒ C ⊆ A.. (3)

In particular, we have:

(i) ·. and ·/ are antitone: A. ⊇ B. for all word sets A ⊆ B and C/ ⊇ D/ for
all context sets C ⊆ D.

(ii) A./. = A. and C/./ = C/ for all word sets A and context sets C.
(iii) ·./ is a closure operator on (P(Σ∗),⊆) and ·/. is a closure operator on

(P(Σ∗ ×Σ∗),⊆).
(iv) ·. : ({C/ | C ⊆ Σ∗ × Σ∗},⊇) � ({A. | A ⊆ Σ∗},⊆) : ·/ form an order

isomorphism between the closed word sets and the closed context sets.

Claims (i)-(iv) are standard consequences of a Galois-connection (see Appendix
1, Lemma 7). Since A ⊆ L gives (ε, ε) ∈ A. , hence A./ ⊆ {(ε, ε)}/ = L, we have

A ⊆ L ⇐⇒ A./ ⊆ L. (4)

In particular, L itself is closed: L./ = L.

Proposition 2. For all A,B ⊆ Σ∗, (A./B./)./ = (AB)./.

Proof. Since ·./ is a closure operator on P(Σ∗), it is sufficient to show that
A./B./ ⊆ (AB)./. Let a ∈ A./, b ∈ B./, hence A. ⊆ a. and B. ⊆ b.. Moreover,
let (u,w) ∈ (AB)., so uABw ⊆ L. Since {u}×Bw ⊆ A. ⊆ a. we have uaBw ⊆
L, so (ua,w) ∈ B. ⊆ b., and uabw ∈ L. Thus, ab ∈ (AB)./.

For the residuation A/B := {v ∈ Σ∗ | {v}B ⊆ A} of word sets A,B, we have:

Proposition 3. For all A,B ⊆ Σ∗, (A/B)./ ⊆ A.//B. If A = A./, then
(A/B)./ = A/B.

Proof. Pick v ∈ (A/B)./. We need to show v ∈ A.//B, which is equivalent to
vB ⊆ A./, i.e. that xvBy ⊆ L for all (x, y) ∈ A.. So let (x, y) ∈ A.. Then

x ·A/B ·B · y ⊆ xAy ⊆ L,

hence {(x, by) | b ∈ B} ⊆ (A/B).. Therefore, since v ∈ (A/B)./, we have
xvBy ⊆ L. Thus, vB ⊆ A./, which shows v ∈ A.//B. So (A/B)./ ⊆ A.//B. If
A is closed, A/B ⊆ (A/B)./ ⊆ A.//B = A/B.

2.1 The residuated lattice B(L) of all concepts of L

A syntactic concept of L is a pair 〈A,C〉 of a word set A and context set C such
that A. = C and C/ = A. Note that here A = A./ and C = C/. are closed sets,
and by the order isomorphism of Proposition 1 (iv) and (ii), one can represent
a concept 〈A,C〉 by its closed word set A./ or by its closed context set C/..

Theorem 1. (Clark[1]) The set B(L) of all concepts of L forms a monoidal,
residuated and complete lattice,

B(L) := (B(L), ◦, 11, \, /,∨,∧,>,⊥,≤)

where the operations are, in terms of closed word sets, given by

A ◦B := (A ·B)./,
11 := {ε}./,

B\A := {v ∈ Σ∗ | B · {v} ⊆ A},
A/B := {v ∈ Σ∗ | {v} ·B ⊆ A},

A ∨B := (A ∪B)./,
A ∧B := A ∩B,
> := Σ∗,
⊥ := ∅./,

A ≤ B :⇐⇒ A ⊆ B.

Proof. (Sketch) Monoid properties for ◦ and 11 follow from Proposition 2:

(A ◦B) ◦ C = ((AB)./C)./ = ((AB)./C./)./ = (ABC)./ ,

A ◦ 11 = (A · {ε}./)./ = (A · {ε})./ = A.

By proposition 3, we know that A/B is closed when A is. Since the residual laws
hold in P(Σ∗) they hold in B(L), because for concepts A,B,C,

A ◦B ⊆ C ⇐⇒ (A ·B)./ ⊆ C ⇐⇒ A ·B ⊆ C. (5)

(See also Jipsen e.a.[4], Lemma 7.1.)

The residuations make the syntactic concept lattices complete for the full
Lambek calculus, see [7]. Clark emphasizes the lattice structure “as a good
search space” for grammatical inference. To learn CFGs, it is sufficient that
(B(L),∨,⊥, ◦, 11) is a complete idempotent semiring, in which context-free gram-
mars can be interpreted.

Proposition 4. The syntactic concepts of L form a complete idempotent semir-
ing

B(L) = (B(L),+B(L), 0B(L), ·B(L), 1B(L)) := (B(L),∨,⊥, ◦, 11),

and the mapping h : P(Σ∗)→ B(L) given by h(A) := 〈A./, A.〉, is a continuous
semiring-homomorphism.

A context-free grammar G with constants from Σ is a system of polynomial
equations Xi = pi(X1, . . . , Xn). Its least solution in P(Σ∗), the tuple of lan-
guages L(G,A) for nonterminals A, is componentwise mapped by h to its least
solution in B(L), the tuple of closed sets L(G,A)./. For the main component,
we have h(L) = h(L(G,S)) = L(G,S)./ = L./ = L.

Remark 1. Since the Kleene-closure A∗ is the least solution of AX + 1 ≤ X in
P(Σ∗) and h preserves least fixed-points, the semiring of syntactic concepts of
L can be expanded to a Kleene algebra (B(L),∨,⊥, ◦, 11,⊗), using 〈A,C〉⊗ :=
〈(A∗)./, ((C/)∗).〉.

2.2 The lattice B(L, F) of concepts of L relative to F

We restrict ourselves to context-free grammars in weak Chomsky Normal Form
(CNF), where rules may have the forms (C → ε), (C → a), (C → DE), where ε
is the empty word, a is a terminal and C,D,E are nonterminals of the grammar.
A motivating idea of Clark was that a finite set V of concepts in the monoidal
lattice B(L) gives rise to a grammar G(L, V) that defines a sublanguage of L.

Proposition 5. (c.f. Lemma 1 in [2]) Let L ⊆ Σ∗ and V ⊆ B(L) be a finite
set of concepts, here viewed as context sets C ⊆ Σ∗ × Σ∗ that are closed, i.e.
C = C/.. Let G(L, V) = (Σ,V, P, S) be the grammar with

S := {(ε, ε)}/.,
P := {(C → w) | w ∈ Σ ∪ {ε}, C ∈ V,w ∈ C/}
∪ {(C → DE) | C,D,E ∈ V, (D/E/)./ ⊆ C/}.

Then L(G(L, V)) ⊆ L.

Proof. By induction, one shows that if C ⇒∗ w, then w ∈ C/, and L = S/.

In suitable cases, each concept C = C/. of V may be generated by a finite
subset Cf ⊆ C (c.f. the diagnostic contexts in 3.4 of Harris[3]), i.e. C = C/.

f ,
and then V is determined by a collection of subsets of a finite set F ⊆ Σ∗ ×Σ∗
of contexts. In particular, when L does have a grammar G whose nonterminals
A define word sets L(G,A) that are the filler sets C/

A of a finite set CA ⊆ F of
contexts, we can hope to find such a grammar G from a finite fragment E ⊆ L
that provides each context (u, v) of F through some word uwv ∈ E.

The idea now is to construct from a finite set F of contexts a finite “approx-
imation” B(L,F) of B(L) and define a variant G(L,F) of G(L, V) such that
L(G(L,F)) ⊆ L. In suitable cases, G(L,F) defines L.

Proposition 6. For sets F ⊆ Σ∗ × Σ∗ of contexts and A ⊆ Σ∗ of words, let
AF := A. ∩ F . The mappings ·F : (P(Σ∗),⊇) � (P(F),⊆) : ·/ form a Galois-
connection, i.e. for all A ∈ P(Σ∗) and C ∈ P(F) we have

C/ ⊇ A ⇐⇒ C ⊆ AF .

In particular, properties (i) – (iv) of proposition 1 hold with ·F instead of ·..

A concept of L relative to F is a pair 〈A,C〉 of P(Σ∗) × P(F) such that
AF = C and C/ = A. In this case, A = C/ = AF/ is closed with respect to ·F/

and C = AF = C/F is closed with respect to ·/F .

Proposition 7. Let F ⊆ Σ∗ × Σ∗. The set of all concepts of L relative to F
forms a complete lattice B(L,F) = (B(L,F),∨,∧,>,⊥,≤), where

> := 〈Σ∗, Σ∗F 〉 ⊥ := 〈F /, F 〉
〈A1, C1〉 ∨ 〈A2, C2〉 := 〈(A1 ∪A2)F/, C1 ∩ C2〉
〈A1, C1〉 ∧ 〈A2, C2〉 := 〈A1 ∩A2, (C1 ∪ C2)/F 〉
〈A1, C1〉 ≤ 〈A2, C2〉 :⇐⇒ A1 ⊆ A2 ∧ C1 ⊇ C2.

(Notice that ∅F = F and ∅/ = Σ∗.) Define an operation ◦ : B(L,F)×B(L,F)→
B(L,F) by

〈A1, C1〉 ◦ 〈A2, C2〉 := 〈(A1A2)F/, (C/
1C

/
2)F 〉.

Indeed, (A1A2)F/F = (A1A2)F = (C/
1C

/
2)F and (C/

1C
/
2)F/ = (A1A2)F/. More-

over, ◦ is monotone with respect to ≤. However, proposition 2 does not ex-
tend from ·./ to ·F/, and ◦ is not a monoid operation on B(L,F); nor is
11 = 〈{ε}F/, {ε}F 〉 neutral with respect to ◦.

Let PF/(Σ∗) be the set of ·F/-closed word sets and P/F (F) the set of ·/F -
closed sets of contexts from F . We sometimes use the component functions ◦F/

on PF/(Σ∗) and ◦/F on P/F (F) of ◦, defined by

A1 ◦F/ A2 := (A1A2)F/ and C1 ◦/F C2 := (C/
1C

/
2)F .

If F is finite, a concept 〈A,C〉 of L relative to F has a finite representation by
its closed context set C.

Lemma 1. If F ⊆ Σ∗×Σ∗ is finite and (ε, ε) ∈ F , then L(G(L,F)) ⊆ L, where
G(L,F) is the CNF-grammar (V,Σ, P, S) with

V := {C | ∅ 6= C ⊆ F, C/F = C},
S := {(ε, ε)}/F ,
P := {(C → w) | C ∈ V,w ∈ Σ ∪ {ε}, C ⊆ wF },
∪ {(C → DE) | C,D,E ∈ V, C ⊆ (D/E/)F }.

Proof. As for proposition 5, we show by induction on the length of derivations
that if C ⇒∗ w, then w ∈ C/. The claim follows from S/ = {(ε, ε)}/F/ =

{(ε, ε)}/ = L. For a derivation C ⇒ DE ⇒∗ uE ⇒∗ uv with u, v ∈ Σ∗, we have,
by induction,

uv ∈ D/E/ ⊆ (D/E/)F/ ⊆ C/,

using that ·F/ is a closure operator on P(Σ∗), that C ⊆ (D/E/)F , and that ·/
is antitone.

If G1 = (V1, Σ, P1, S1) and G2 = (V2, Σ, P2, S2) are CNF-grammars over Σ,
the mapping ·̃ : V1 → V2 induces a grammar homomorphism from G1 to G2, if
S̃1 = S2 and (C̃ → a), (C̃ → D̃Ẽ) ∈ P2 for all rules (C → a), (C → DE) ∈ P1.
In this case, clearly L(G1) ⊆ L(G2).

We remark that the mapping C 7→ C/. induces a grammar isomorphism
from G(L,F) to G(L, V), where V = {C/. | C ∈ VF }, and VF is the set of
nonterminals of G(L,F). Moreover, if (ε, ε) ∈ F1 ⊆ F2, then C 7→ C/F2 induces
a grammar homomorphism fromG(L,F1) toG(L,F2). It follows that L(G(L,F))
is monotone in F , but we will not exploit this.

2.3 Grammars with the finite context property

A context-free grammar G has the finite context property (FCP), if the ·./-
closure of the word set L(G,A) := {v ∈ Σ∗ | A ⇒∗G v} of every nonterminal A
of G can be defined by a finite non-empty1 set CA ⊆ Σ∗ ×Σ∗ of contexts, i.e.

L(G,A)./ = C/
A.

The grammar has the finite context property with respect to the context set F ,
if all the above CA are subsets of F . Clearly, this is monotone in F , and we can
replace the CA ⊆ F by their closures C/F

A , because C/F/
A = C/

A,

Lemma 2. If L has a CNF-grammar G with the FCP with respect to the finite
set F of contexts, then G(L,F) contains a homomorphic image of G and L =
L(G(L,F)).

Proof. Suppose G = (V,Σ, P, S), and for each A ∈ V , suppose L(G,A)./ = C/
A

for some ∅ 6= CA ⊆ F . We can assume that CA ∈ P/F (F). Let G(L,F) =
(V (L,F), Σ, P (L,F), S(L,F)). Under A 7→ CA, each rule of G is mapped to
a rule of G(L,F). If (A → BD) ∈ P , then L(G,B)L(G,D) ⊆ L(G,A), hence
C/

BC
/
D ⊆ C/

A using proposition 2, hence CA = C/F
A ⊆ (C/

BC
/
D)F , and therefore

(CA → CBCD) ∈ P (L,F). If (A→ a) ∈ P for a ∈ Σ ∪ {ε}, then a ∈ L(G,A) ⊆
C/

A, so CA = C/F
A ⊆ aF , hence (CA → a) ∈ P (L,F). Moreover, S is mapped

to S(L,F) = {(ε, ε)}/F : since L = L./ = L(G,S)./ = C/
S = {(ε, ε)}/, we

have CS = C/F
S = {(ε, ε)}/F = S(L,F). Thus A 7→ CA induces a grammar

homomorphism from G to G(L,F). It follows that L = L(G) ⊆ L(G(L,F)). By
lemma 1, L(G(L,F)) ⊆ L.

1 Non-emptyness of CA is not demanded in [2], [8], but is needed for E ⊆ L in lemma
3. The stronger condition L(G,A) = C/

A is used in [2], [5].

The set of contexts derived from v ∈ L resp. E ⊆ Σ∗ is

Con(v) := {(u,w) ∈ Σ∗ ×Σ∗ | ∃ṽ ∈ Σ∗ v = uṽw},
Con(E) :=

⋃
{Con(v) | v ∈ E}.

Lemma 3. Suppose G = (V,Σ, P, S) is a CNF-grammar without unnecessary
nonterminals, and L = L(G) 6= ∅. If G has the FCP, there are finite sets E ⊆ L
and F ⊆ Con(E) such that G has the FCP with respect to F .

Proof. For each nonterminal A of G, there is a finite set of contexts CA 6= ∅ such
that L(G,A)./ = C/

A. Let F =
⋃
{CA | A ∈ V } be the union of all CA. Since

each A ∈ V is necessary, C/
A 6= ∅, so there is vA ∈ Σ∗ such that vA ∈ C/

A. Then
CA ⊆ Con(CA � vA), and CA � vA ⊆ L is finite. It follows that F ⊆ Con(E) for
E =

⋃
{CA � vA | A ∈ V } ⊆ L.

It follows that if L has a grammar with the FCP, then in order to find one,
we can search finite subsets E of L and consider G(L,F) with F = Con(E). We
know that L(G(L,F)) is a subset of L, and equals L when F is large. However,
to construct G(L,F) we must avoid computing infinite filler sets C/ in order to
find the closed sets C = C/F . We need a truely finite representation of G(L,F).

3 Lattices B(K,L, F) of relativized concepts of L

Let K ⊆ Σ∗ and F ⊆ Σ∗ ×Σ∗ be word- and context sets. Put

AF := A. ∩ F, CK := C/ ∩K, AFK := (AF)K , CKF := (CK)F .

Then AF and CK are monotone in F and K, but antitone in A und C.

Proposition 8. The mappings ·F : (P(K),⊇) � (P(F),⊆) : ·K form a Galois-
connection, i.e. for all A ∈ P(K) and C ∈ P(F) we have

CK ⊇ A ⇐⇒ C ⊆ AF .

In particular,

(i) ·F and ·K are antitone: AF ⊇ BF for all A ⊆ B ⊆ K and CK ⊇ DK for all
C ⊆ D ⊆ F ,

(ii) AFKF = AF and CKFK = CK for all A ⊆ K and C ⊆ F .
(iii) ·FK resp. ·KF is a closure operator on (P(K),⊆) resp. (P(F),⊆).
(iv) ·F : ({CK | C ⊆ F},⊇) � ({AF | A ⊆ K},⊆) : ·K form an order iso-

morphism.

We call a pair 〈A,C〉 such that AF = C and CK = A a relativized concept of L.
Let B(K,L, F) be the set of all relativized concepts of L. The components of a
relativized concept 〈A,C〉 are closed with respect to ·FK and ·KF , respectively,

as A = AFK and C = CKF , and via (ii) and (iv) one can represent a relativized
concept of L by its closed word set or its closed context set. Writing

PFK(K) := {A ⊆ K | A = AFK} and PKF (F) := {C ⊆ F | C = CKF }

for the set of closed members of P(K) and P(F), respectively, (iv) gives an order
isomorphism

·F : (PFK(K),⊇) � (PKF (F),⊆) : ·K .

Proposition 9. Let K ⊆ Σ∗ and F ⊆ Σ∗ × Σ∗. The set of all relativized
concepts of L forms a complete lattice B(K,L, F) = (B(K,L, F),∨,∧,>,⊥,≤)
with the following operations:

> := 〈K,KF 〉 ⊥ := 〈∅FK , F 〉
〈A1, C1〉 ∨ 〈A2, C2〉 := 〈(A1 ∪A2)FK , C1 ∩ C2〉
〈A1, C1〉 ∧ 〈A2, C2〉 := 〈A1 ∩A2, (C1 ∪ C2)KF 〉
〈A1, C1〉 ≤ 〈A2, C2〉 :⇐⇒ A1 ⊆ A2 ∧ C1 ⊇ C2.

When K = Σ∗, we have CK = C/ for all C ⊆ F , and B(Σ∗, L, F) = B(L,F).
When F is finite, we want to use B(L,F) as a finite “approximation” of the
generally infinite B(L), and when K is also finite, B(K,L, F) is a finite, effective
approximation of B(L,F). To relativize to B(K,L, F) the monoid operation ◦
of B(L) with its component functions ◦./ and ◦/.,

〈A1, C1〉 ◦ 〈A2, C2〉 = 〈A1 ◦./ A2, C1 ◦/. C2〉 := 〈(A1A2)./, (C/
1C

/
2).〉,

Clark [1] (Def. 7) defines a partial operation ◦ on B(K,L, F) by

〈A1, C1〉 ◦ 〈A2, C2〉 := 〈A1 ◦FK A2, C1 ◦KF C2〉 := 〈(A1A2)FK , (CK
1 C

K
2)F 〉,

which need not be a monoid operation. (Proposition 2 for ·./ does not extend to
all ·FK .) It is only a partial operation on B(K,L, F), because although (A1A2)FK

is closed in P(K) and the ·K-image of (CK
1 C

K
2)F , the latter need not belong to

PKF (F): CK
1 C

K
2 need not be a subset of K, whence its ·F -image need not be

·KF -closed in P(F).
Moreover, the embedding 〈A,C〉 7→ 〈C/, C〉 from B(K,L, F) to B(L,F) need

not preserve ◦. However, if K is large enough, everything is fine:

Lemma 4. (cf. Clark[1], Lemma 6): For any L ⊆ Σ∗ and finite F ⊆ Σ∗ ×Σ∗,
there is a finite K ⊆ Σ∗ such that

(B(K,L, F),∨,∧,⊥,>,≤, ◦) ' (B(L,F),∨,∧,>,⊥,≤, ◦).

We detail the four line proof sketch from [1] for later reference.

Proof. First note that if C ⊆ F is closed in PKF (F), it is closed in P/F (F) as
well: if C = CKF , then since C/ ⊇ CK gives C/F ⊆ CKF = C, so C = C/F

as ·/F is a closure operator on P(F). Therefore 〈A,C〉 7→ 〈AF/, C〉 = 〈C/, C〉
embeds B(K,L, F) into B(L,F).

To make this embedding be onto B(L,F), we have to choose K sufficiently
large. Recall that CKF is antitone in K, and C/F ⊆ CKF for any C ⊆ F and
any K. If CKF 6⊆ C/F , there is (u, v) ∈ CKF \C/F , and hence some w ∈ C/\CK

such that uwv 6⊆ L, hence (u, v) /∈ C(K∪{w})F . By adding at most |CKF \ C/F |
many elements from C/ to K we obtain K ′ ⊇ K such that C/F = CK′F ⊆ CKF .
Since P(F) is finite, there is thus a finite set K ⊆ Σ∗ such that

CKF = C/F , for all C ⊆ F. (6)

It follows that 7→: (B(K,L, F),∨,∧,⊥,>,≤) ' (B(L,F),∨,∧,⊥,>,≤), and
that AFKF = AF/F = AF for any A ⊆ Σ∗ (not just for A ⊆ K). In particular,
◦ is total on B(K,L, F), as for each 〈A1, C1〉, 〈A2, C2〉 ∈ B(K,L, F) we get

〈A1, C1〉 ◦ 〈A2, C2〉 = 〈(A1A2)FK , (CK
1 C

K
2)F 〉 = 〈(A1A2)FK , (CK

1 C
K
2)FKF 〉.

Moreover, by similar means we can achieve that

(CK
1 C

K
2)F = (C/

1C
/
2)F , for all C1, C2 ⊆ F, (7)

so that 7→ preserves ◦ since for each 〈A1, C1〉, 〈A2, C2〉 ∈ B(K,L, F), we get

〈A1, C1〉 ◦B(K,L,F) 〈A2, C2〉 = 〈(A1A2)FK , (CK
1 C

K
2)F 〉

7→ 〈(C/
1C

/
2)F/, (C/

1C
/
2)F 〉 = 〈C/

1 , C1〉 ◦B(L,F) 〈C/
2 , C2〉.

To see (7), notice that (CK
1 C

K
2)F ⊇ (C/

1C
/
2)F for any K, and if we have 6= here,

there are u ∈ C/
1 \ CK

1 and v ∈ C/
2 \ CK

2 . Adding these to K lets (CK
1 C

K
2)F

shrink stricty. By adding at most |(CK
1 C

K
2)F \ (C/

1C
/
2)F | many elements from

C/
1 ∪C/

2 to K we obtain K ′ ⊇ K such that (CK′

1 CK′

2)F = (C/
1C

/
2)F . Since P(F)

is finite, we can do this for all C1, C2 ⊆ F , and achieve (7).

The monotonicity properties ensure that (6) and (7) and hence B(K,L, F) '
B(L,F) are preserved under extensions of K.

Corollary 1. For any finite F where ∅ is not ·/F -closed, there is a finite K ⊆
Sub(L) such that

(B(K,L, F),∨,∧,⊥,>,≤, ◦) ' (B(L,F),∨,∧,>,⊥,≤, ◦).

Proof. For ∅ 6= C ⊆ F we have C/ ⊆ Sub(L). To achieve C/F = CKF and
(CK

1 C
K
2)F = (C/

1C
/
2)F , only elements from C/ and C/

i are added to K in the
above proof, so we can do with some K ⊆ Sub(L), provided ∅ 6= ∅/F .

If ∅ is ·/F -closed, as it often happens, there may be no finite K ⊆ Sub(L) with
∅KF = ∅/F = ∅. For example, when K ⊆ Sub(L) = L 6= Σ∗ and F = {(ε, ε)},
then ∅/F = (Σ∗)F = ∅, but ∅KF = KF = F . Also, when K ⊆ Sub(L), it may
be impossible that ◦KF is total on PKF (F), i.e. there may be C1, C2 ∈ PKF (F)
such that C1 ◦KF C2 = (CK

1 C
K
2)F = ∅ 6= ∅KF .

3.1 Clark’s learning algorithm

For finite sets K ⊆ Σ∗ and F ⊆ Σ∗ × Σ∗ with (ε, ε) ∈ F , Clark relativized
G(L, V) to a grammar G(K,L, F) = (V,Σ, P, S) where2

V := {C | C ⊆ F,C = CKF },
S := {(ε, ε)}KF ,

P := {(C → w) | C ∈ V,w ∈ Σ ∪ {ε}, w ∈ CK}
∪ {(C → DE) | C,D,E ∈ V, (DKEK)FK ⊆ CK}.

He then shows (Lemma 2,3,4 in [2]) that L(G(K,L, F)) depends monotonically
on F and antitonically on K ⊇ Σ ∪ {ε}. Theorem 1 in [2] claims that the
following algorithm identifies L in the limit, i.e. that for any oracles T and χL,
〈Gn | n ∈ N〉 gets constant at some Gn such that L(Gn) = L.

Let Σ be a finite alphabet and L ⊆ Σ∗, a language with a CNF-grammar with
the finite context property, be given by oracles χL : Σ∗ → B and T : N → Σ∗ for
recognition and enumeration of L.

Produce a sequence 〈Gn | n ∈ N〉 of CNF-grammars, where wn = T (n):

E0 := ∅,

K0 := Σ ∪ {ε},

F0 := {(ε, ε)},

G0 := G(K0, L, F0).

En+1 := En ∪ {wn},

Kn+1 :=

8><>:
Sub(En+1), if En+1 6⊆ L(Gn), or

G(Sub(En+1), L, Fn) 6' Gn

Kn, else

Fn+1 :=

(
Con(En+1), if En+1 6⊆ L(Gn),

Fn, else

Gn+1 := G(Kn+1, L, Fn+1).

Table 1. Clark’s grammar inference algorithm

Why should 〈Gn | n ∈ N〉 converge to a grammar for L? Call a finite set F of
contexts adequate for L if L ⊆ L(G(K,L, F)) for every finite Σ∪{ε} ⊆ K ⊆ Σ∗.
By lemma 3, there is some F such that L ⊆ L(G(L,F)). Then any Fn ⊇ F is
adequate for L, since G(L,F) = G(Σ∗, L, F), and L(G(K,L, F)) is monotone
in F and antitone in K ⊆ Σ∗. So one would first like to show:

〈Fn | n ∈ N〉 gets constant in some Fn that is adequate for L,

so that L ⊆ L(G(Km, L, Fn)) for all m, and then show:

〈Kn | n ∈ N〉 gets constant in some Km such that L = L(G(Km, L, Fn)). (8)

2 We omit a size bound f on a generating subset for the CKF in the definition of V ,
which only serves to bound |G(K,L, F)| by a polynomial in |K| and |F |.

To achieve (8), Lemma 5 in [2] claims:

For any L and F , there is K ⊆ Σ∗ such that L(G(K,L, F)) ⊆ L. (9)

The proof sketched in [2] only works for the infinite set K = Σ∗, but the claim
is needed with finite K ⊆ Sub(L) in the grammar inference algorithm. However,
this strengthening of (9) is wrong:

Example 1. There is a language L ⊆ Σ∗ and a finite set of contexts F with

L(G(K,L, F)) 6⊆ L, for all finite K such that Σ ∪ {ε} ⊆ K ⊆ Sub(L).

Let Σ = {a}, F = {(ε, ε)}, L = {ε, a}. The only finite set K with Sub(L) ⊇ K ⊇
Σ ∪ {ε} is K = L.

(i) The set V of closed elements of P(F) contains F , since F ⊆ FKF is maximal
in P(F). Since FK = {k ∈ K | εkε ∈ L} = K ∩ L = L and a ∈ L, (F → a)
is a non-branching rule of G(K,L, F).

(ii) To see that (F → FF) is a branching rule of G(K,L, F), notice that since
LL 6⊆ L, we have (FKFK)F = (LL)F = ∅, so (FKFK)FK = ∅K = K =
L = FK .

Since F is the start symbol of G(K,L, F), it follows that aa ∈ L(G(K,L, F))\L.
This grammar, extended by the rule F → ε, is G0, so L ⊂ L(G0) and K1 = K0,
F1 = F0, and G1 = G(K1, L, F1) = G0. By induction, 〈Gn | n ∈ N〉 gets constant
in G0, a grammar that does not define L.

3.2 Correcting Clark’s algorithm

Example 1 shows that Clark’s condition (DKEK)FK ⊆ CK in branching rules
of G(K,L, F) is too permissive. For concepts C,D,E, being a branching rule
(C → DE) of G(L, V) amounts to any of the equivalent conditions D/E/ ⊆
C/, (D/E/)./ ⊆ C/ or C ⊆ (D/E/).. These are no longer equivalent in the
relativized situation; for concepts C,D,E relativized to K,F we only have

DKEK ⊆ CK =⇒ C ⊆ (DKEK)F =⇒ (DKEK)FK ⊆ CK .

Though ·FK is a closure operation on P(K), we may have DKEK 6⊆ (DKEK)FK

when DKEK 6⊆ K. We modify the definition of G(K,L, F) by replacing the con-
dition (DKEK)FK ⊆ CK by the stronger condition3 C ⊆ (DKEK)F . Moreover,
we exclude the empty context set from the nonterminals.

Definition 1. Let K,L ⊆ Σ∗ be arbitrary sets of words, and F ⊆ Σ∗ × Σ∗ a
finite set of contexts such that (ε, ε) ∈ F . Then G(K,L, F) is the binary grammar

3 It excludes (F → FF) in example 1, where F 6⊆ (FKFK)F = ∅. The weaker C ⊆
(DKEK)FKF is equivalent to Clark’s (DKEK)FK ⊆ CK .

(V,Σ, P, S) where

V := {C | ∅ 6= C ⊆ F, CKF = C}
S := {(ε, ε)}KF ,

P := {(C → w) | C ∈ V,w ∈ Σ ∪ {ε}, C ⊆ wF }
∪ {(C → DE) | C,D,E ∈ V, C ⊆ (DKEK)F }.

Note that for C = CKF , the condition C ⊆ wF is equivalent to w ∈ CK . When
K and F are finite, we can determine V , S and P from a decision algorithm
for membership in L. To determine V , we need to know (F � K) ∩ L, and to
determine P , we need to know (F �KK) ∩ L.

Our conditions C ⊆ wF for non-branching rules (C → w) and C ⊆ (DKEK)F

for branching rules (C → DE) of G(K,L, F) are monotone in F and antitone in
K. Yet, as pointed out by R. Yoshinaka4, L(G(K,L, F)) is neither monotone in
F nor antitone in K. The reason is that for F1 ⊆ F2, say, the set V1 of nontermi-
nals of G(K,L, F1) is not a subset of the set V2 of nonterminals of G(K,L, F2),
and the embedding ·̃ : V1 → V2 given by C̃ := CKF2 gives C ⊆ C̃ and hence can
lead from C ⊆ (DKEK)F1 to C̃ 6⊆ (D̃KẼK)F2 and does not induce a grammar
homomorphism.

Before presenting a correction of Clark’s algorithm, let us recapitulate his
idea. A finite amount of positive information E ⊆ L about L gives a finite
set F = Con(E) of contexts and, through B(L,F), a grammar G(L,F) of a
sublanguage of L. If F is big enough, G(L,F) defines L. Each F and each
finite K ⊆ Σ∗ provide, through the finite B(K,L, F), a grammar G(K,L, F)
whose language is monotone in F and antitone in K. If F is big enough, L ⊆
L(G(K,L, F)), and if K is big enough, one has B(L,F) ' B(K,L, F), in which
case G(K,L, F) is G(L,F) and defines L. Thus, when E 6⊆ L(G(K,L,Con(E))),
one needs to increase E, and otherwise one should keep F = Con(E) fixed and
increase K to make it big enough.

Since the input to the inference process consists of positive information about
L only, we cannot use lemma 4 directly to get B(K,L, F) ' B(L,F), but need
a refinement with K ⊆ Sub(L) instead of K ⊆ Σ∗. (We get no clue on which
K 6⊆ Sub(L) would satisfy ∅ = ∅/F = ∅KF , so we exclude ∅ resp. > from
the nonterminals.) Moreover, it will in general be impossible to define L with
G(K,L, F) where K = Sub(E) and F = Con(E) for some finite E ⊆ L; we
may need a finite K with Sub(E) ⊂ K ⊆ Sub(L). So we have to switch between
increasing F on the one hand and increasing K while keeping F fixed on the
other. Finally, of course we cannot explicitly test whether F is big enough so that
L = L(G(L,F)), or whether K gives B(K,L, F) ' B(L,F). We need computable
substitutes for such tests.

We say that 〈PKF (F), ◦KF 〉 and 〈P/F (F), ◦/F 〉 almost agree, in symbols:
〈PKF (F), ◦KF 〉 ≡ 〈P/F (F), ◦/F 〉, if for all non-empty C,C1, C2 ⊆ F ,

CKF = C/F and C1 ◦KF C2 = C1 ◦/F C2.

4 Personal communication, February 2013

Like (6) and (7) in the proof of lemma 4, this property is monotone in K; but
now we only consider non-empty subsets of F .

Lemma 5. Let F ⊆ Σ∗ ×Σ∗ and K ⊆ Sub(L) be finite, and (ε, ε) ∈ F .

(i) There is a finite K ⊆ K̃ ⊆ Sub(L) with 〈PK̃F (F), ◦K̃F 〉 ≡ 〈P/F (F), ◦/F 〉.
(ii) If 〈PKF (F), ◦KF 〉 ≡ 〈P/F (F), ◦/F 〉, then G(K,L, F) = G(L,F).

Proof. (i) We need to satisfy the restrictions of (6) and (7) to non-empty sets
C,C1, C2 ⊆ F . As the proof of lemma 4 shows, we have to extend K by elements
of C/, C/

1 , C
/
2 , and these are subsets of Sub(L) when C,C1, C2 are non-empty.

(ii) Since 〈PKF (F), ◦KF 〉 and 〈P/F (F), ◦/F 〉 almost agree, G(K,L, F) and
G(L,F) have the same nonterminals, start symbols, and non-branching rules
and branching rules.

Although 〈P/F (F),⊇, ◦/F 〉 is a finite structure, we generally cannot compute
it, given an oracle for membership in L, because possibly infinite word sets C/

are involved. So we cannot test whether 〈PKF (F), ◦KF 〉 almost agrees with
〈P/F (F), ◦/F 〉. Nor can we test whether G(K,L, F) equals G(L,F). But we can
test the following weaker property, which however is not monotone in K.

We say ◦KF is almost total on PKF (F), if for all non-empty C1, C2 ∈
PKF (F), C1 ◦KF C2 belongs to PKF (F) ∪ {∅}. Using an oracle for member-
ship in L one can check whether ◦KF is almost total.

Proposition 10. The following conditions are equivalent:

(i) For all non-empty C ⊆ F , CKF = C/F .
(ii) PKF (F) \ {∅} = P/F (F) \ {∅}.

Proof. (i) ⇒ (ii): We have PKF (F) ⊆ P/F (F), since for all C ⊆ F , we have
CK ⊆ C/, hence C ⊆ C/F ⊆ CKF , and when C ∈ PKF (F), we also have
CKF ⊆ C. Now suppose C ∈ P/F (F) \ {∅}. Then ∅ 6= C = C/F , so by (i)
CKF = C/F = C, whence C ∈ PKF (F) \ {∅}.

(ii) ⇒ (i): Assume ∅ 6= C ⊆ F . Then by (ii), ∅ 6= C/F ∈ P/F (F) ⊆ PKF (F),
so CKF ⊆ (C/F)KF = C/F ⊆ CKF .

Proposition 11. Let F ⊆ Σ∗ × Σ∗ and K ⊆ Σ∗. If 〈PKF (F), ◦KF 〉 and
〈P/F (F), ◦/F 〉 almost agree, then ◦KF is almost total on PKF (F).

Proof. Suppose C1, C2 ∈ PKF (F) are nonempty, and (C1 ◦KF C2) 6= ∅. Then

C1◦KFC2 = C1◦/FC2 = (C/
1C

/
2)F = (C/

1C
/
2)F/F = (C/

1C
/
2)FKF = (C1◦KFC2)KF ,

and so (C1 ◦KF C2) ∈ PKF (F).

Lemma 6. Suppose F ⊆ Σ∗ × Σ∗ is finite with (ε, ε) ∈ F and L ⊆ Σ∗ has a
CNF-grammar G with the FCP with respect to F . If Σ ∪{ε} ⊆ K ⊆ Σ∗ is finite
and ◦KF is almost total on PKF (F), then L ⊆ L(G(K,L, F)).

Proof. By assumption, for each nonterminal A of G there is a finite set ∅ 6=
CA ⊆ F with L(G,A)./ = C/

A. We show that A 7→ CKF
A induces a grammar

homomorphism from G to G(K,L, F). For each nonterminal A of G, ∅ 6= CKF
A

is ·KF -closed, hence a nonterminal of G(K,L, F). Let (A→ DE) be a rule of G,
so C/

A ⊇ C/
DC

/
E , using proposition 2. Then

∅ 6= CA ⊆ C/F
A ⊆ (C/

DC
/
E)F ⊆ (CK

DC
K
E)F = (CKFK

D CKFK
E)F = CKF

D ◦KF CKF
E .

By monotonicity of ·KF and since ◦KF is almost total on PKF (F), we get

CKF
A ⊆ (CKF

D ◦KF CKF
E)KF ⊆ CKF

D ◦KF CKF
E ,

and so (CKF
A → CKF

D CKF
E) is a rule of G(K,L, F). Likewise, let (A → a) be

a rule of G. Then a ∈ L(G,A) ∩ K ⊆ C/
A ∩ K = CK

A , so CKF
A ⊆ aF , and

(CKF
A → a) is a rule of G(K,L, F). Hence, if A⇒∗G w, then CKF

A ⇒∗G(K,L,F) w.

We may assume that CS = {(ε, ε)}, as C/
S = L = {(ε, ε)}/ = {(ε, ε)}/F/ since

(ε, ε) ∈ F . Then CKF
S = {(ε, ε)}KF is the start symbol of G(K,L, F), and we

have L = L(G) ⊆ L(G(K,L, F)).

The idea for the corrected grammar inference is as follows. Start with F =
{(ε, ε)} and consume increasing finite subsets E of L until K = Sub(E) makes
◦KF almost total. We find such a K by lemma 5 and proposition 11. If then
E 6⊆ L(G(K,L, F)), we know by lemma 6 that L does not have a grammar with
the FCP with respect to F (i.e. “F is not adequate for L”). So we update F to
Con(E) and repeat this process, until we have K ⊆ Sub(L) where ◦KF is almost
total and E ⊆ L(G(K,L, F)). Then we keep F fixed and increase E and K until
◦KF is almost total, and check if E ⊆ L(G(K,L, F)). If we no more run into
the case E 6⊆ L(G(K,L, F)) where F is increased, we exhaust the finite subsets
K of Sub(L) and hence reach G(K,L, F) = G(L,F) by lemma 5; since this is
monotone in K, the grammar G(L,F) is the limit grammar. Then on the one
hand, E ⊆ L(G(K,L, F)) = G(L,F) for all finite E ⊆ L, hence L ⊆ L(G(L,F)),
and on the other hand L(G(L,F)) ⊆ L.

Since L has a grammar with the FCP, after finitely many updates of F =
Con(E) it has a grammar with the FCP with respect to F . Then by lemma 6,
L ⊆ L(G(K,L, F)) for all K where ◦KF is almost total, and so we do not run
into the case E 6⊆ L(G(K,L, F)) any more.

Theorem 2. If ∅ 6= L ⊆ Σ∗ has a CNF-grammar with the finite context prop-
erty, then the algorithm of table 2 identifies L in the limit, i.e. for the sequence
〈Gn | n ∈ N〉 of grammars produced for any membership oracle and enumeration
of L, there is m such that L(Gm) = L and Gn = Gm for all n ≥ m.

Proof. Let G be a grammar for L with the FCP. We may assume that G has
no unneccesary symbols. By lemma 3, G has the FCP with respect to some
F ⊆ Con(E) for some finite E ⊆ L.

Claim 1 The sequence 〈Fn | n ∈ N〉 gets constant at a finite Fñ ⊆ Con(L).
Proof of Claim 1 : By induction, Fn ⊆ Fn+1 ⊆ Con(En+1) for all n. Assume

that 〈Fn | n ∈ N〉 does not get constant. Then neither do 〈En | n ∈ N〉 nor 〈Kn |

Let Σ be a finite alphabet and ∅ 6= L ⊆ Σ∗, a language with a CNF-grammar with
the finite context property, be given by oracles χL : Σ∗ → B and T : N → Σ∗ for
recognition and enumeration of L.

Produce a sequence 〈Gn | n ∈ N〉 of CNF-grammars, where wn = T (n):

E0 := ∅,

K0 := Σ ∪ {ε},

F0 := {(ε, ε)},

G0 := G(K0, L, F0).

En+1 := En ∪ {wn},

Kn+1 := Sub(En+1) ∪K0,

Gn+1 :=

8><>:
G(Kn+1, L, Fn) if ◦Kn+1Fn is

almost total,

Gn, else,

Fn+1 :=

8><>:
Con(En+1) if En+1 6⊆ L(Gn+1) and

◦Kn+1Fn is almost total,

Fn, else.

Table 2. Grammar inference algorithm

n ∈ N〉, and there are infinitely many n such that Fn ⊂ Fn+1 = Con(En+1). Let n
be one of those. Then ◦Kn+1Fn is almost total and hence Gn+1 = G(Kn+1, L, Fn).
We may assume that F ⊆ Fn+1, so G has the FCP with respect to Fn+1.

Since 〈Fn | n ∈ N〉 does not get constant, there is a least m ≥ n + 1 such
that ◦Km+1Fm is almost total, and then

Gm+1 = G(Km+1, L, Fm) = G(Km+1, L, Fn+1).

By lemma 6, L ⊆ L(G(Km+1, L, Fn+1)) = L(Gm+1), so Em+1 ⊆ L(Gm+1) and
Fm+1 = Fm = Fn+1. Let m̃ be the least k ≥ m+ 1 such that ◦Kk+1Fk is almost
total. Then Gm̃ = Gm+1, Fm̃ = Fm+1 = Fn+1 and

Gm̃+1 = G(Km̃+1, L, Fm̃) = G(Km̃+1, L, Fn+1).

Since ◦Km̃+1Fm̃ is almost total, we also have Em̃+1 ⊆ L ⊆ L(Gm̃+1), again by
lemma 6, so Fm̃+1 = Fm̃ = Fn+1. By induction, Fm̃+1 = Fn+1 for all m̃ ≥ n+ 1
where ◦Km̃+1Fm̃ is almost total, hence for all m̃ ≥ n + 1. This contradicts the
assumption that 〈Fn | n ∈ N〉 does not get constant.

Claim 2 : If 〈Fn | n ∈ N〉 converges to Fñ, then 〈Gn | n ∈ N〉 converges to
G(L,Fñ) and L = L(G(L,Fñ)).

Proof of Claim 2 : Suppose 〈Fn | n ∈ N〉 converges to Fñ. By lemma 5 there
is some finite K ⊆ Sub(L) such that

〈PKFñ(Fñ), ◦KFñ〉 ≡ 〈P/Fñ(Fñ), ◦/Fñ〉. (10)

Since (10) is monotone in K and 〈Kn | n ∈ N〉 is non-decreasing and majorizes
all finite subsets of Sub(L), there is m0 ≥ ñ such that for all m ≥ m0,

〈PKm+1Fñ(Fñ), ◦Km+1Fñ〉 ≡ 〈P/Fñ(Fñ), ◦/Fñ〉.

By lemma 11, ◦Km+1Fñ = ◦Km+1Fm is almost total for m ≥ m0. Therefore
Gm+1 = G(Km+1, L, Fñ) for all m ≥ m0, and G(Km+1, L, Fñ) = G(L,Fñ) by
lemma 5. So 〈Gn | n ∈ N〉 gets constant in G(L,Fñ).

We have L(G(L,Fñ)) ⊆ L by lemma 1. Suppose L 6⊆ L(G(L,Fñ)), and pick
w ∈ L \ L(G(L,Fñ)). Since 〈En | n ∈ N〉 majorizes every finite subset of L, for
some m ≥ m0 we have E ∪ {w} ⊆ Em+1 6⊆ L(G(L,Fñ)) = L(G(Km+1, L, Fm).
Then Fñ = Fm+1 = Con(Em+1) ⊇ Con(E) ⊇ F . So the given G has the FCP
with respect to Fñ. Then L ⊆ L(G(Km+1, L, Fm)) = L(G(L,Fñ)) by lemma 6,
in contradiction to the assumption.

The proof does not rely on whether L(G(K,L, F)) is monotone in F or
antitone in K. In Appendix 2 we show how a grammar for the Dyck language
of well-bracketed strings is correctly inferred.

To obtain polynomial update complexity, we need to limit the number of
concepts. A grammar has the f -finite context property (f -FCP), if for each of its
nonterminals A there is a set CA of contexts such that A./ = C/

A and |CA| ≤ f ,
where f ≥ 1. Restrict the algorithm of table 2 to languages having a grammar
with the f -FCP, and to build the hypotheses Gn, use grammars Gf (K,L, F)
defined like G(K,L, F), but whose nonterminals are non-empty elements from
PKF
f (F) := {CKF | C ⊆ F, |C| ≤ f}. Then the algorithm has polynomial update

time, i.e. the number of steps to generate the hypothesis grammar Gn is bounded
by a polynomial in |En| and max{|w| | w ∈ En}.

First observe that the number of steps to compute Gf (K,L, F) from K and
F is bounded by a polynomial in |K| and |F |. Clearly, PKF

f (F) is of size O(|F |f)
and its elements can be represented in a trie of bitvectors of length |F |. For each
C ⊆ F with |C| ≤ f we need O(f |K||F |) membership queries to determine
CKF and |F | steps to insert it into the trie. Likewise, for C1, C2 ∈ PKF

f (F)

we can compute C1 ◦KF C2 and check if it belongs to PKF
f (F) in O(|K|2|F |)

steps. Therefore, we can compute (PKF
f (F), ◦KF) and check if ◦KF is almost

total on PKF
f (F) in O(|K|2|F |2f+1) steps. If ◦KF is almost total, we can read

off Gf (K,L, F) from (PKF
f (F), ◦KF) in O(|V |3|F |) = O(|F |3f+1) steps.

Next, let e = |En+1| and m be the maximal length of words in En+1. Then
Sub(En+1) and Con(En+1) are determined in O(em2) steps, so Kn+1 and Fn ⊆
Con(En) are of size O(em2), and Gn+1 = Gf (Kn+1, L, Fn) is polynomial in e
and m. Finally, to determine Fn+1, we must check whether En+1 6⊆ L(Gn+1),
which can be done in time polynomial in e and m using a CYK-recognizer ([6]).

4 Conclusion

We have pointed out that Clark’s grammar inference algorithm may converge
to a grammar for a superset of the intended language. We modified Clark’s
grammars G(K,L, F), replaced major parts of the reasoning for the inference
process, and provided proofs of the correctness of the algorithm. We have thus
shown that one can learn a grammar for L, if L does have a CNF grammar

with the finite context property, and can do so in the framework of relativized
syntactic concepts of L. Some experts seemed to think this was impossible5, as
[2] and [8] rely heavily on the (anti)monotonicity of L(G(K,L, F)) in (K)F .

Yoshinaka’s[8] “dual” approach uses grammars H(K,L, F) that differ from
our G(K,L, F) by admitting arbitrary C ⊆ F as nonterminals in order to make
L(H(K,L, F)) monotone in F and antitone in K. This simplifies the reasoning,
but leads to a limit grammar with many “copies” of the same rule.

If we consider syntactic concepts of L as the only linguistically relevant no-
tions to be used in describing L, we would like to do syntactic analysis in terms
of “concept arithmetic”, i.e. using B(L) rather than P(Σ∗). It remains to be
developed what this amounts to, in particular when L is not context-free.

Appendix 1

For completeness, we here provide a proof of the basic properties of Galois-
connections.

Lemma 7. Let f : (A,≤A) � (B,≤B) : g be a Galois connection, i.e. (A,≤A)
and (B,≤B) are partial orders, and for all a ∈ A and b ∈ B

gb ≤A a ⇐⇒ b ≤B fa. (11)

Then the following hold:

(i) g ◦ f is shrinking and f ◦ g is extending, i.e. g(fa) ≤A a and b ≤B f(gb) for
all a ∈ A, b ∈ B.

(ii) f and g are monotone., i.e. fa ≤B fa′ for a ≤A a′, and gb ≤A gb′ for
b ≤B b′.

(iii) f ◦ g ◦ f = f and g ◦ f ◦ g = g.
(iv) g ◦ f is a closure operator on (A,≥A) and f ◦ g is a closure operator on

(B,≤B).
(v) ({gb | b ∈ B},≤A) and ({fa | a ∈ A},≤B) are isomorphic partial orders.

Proof. (i) From fa ≤B fa and (11) we get g(fa) ≤A a, and from gb ≤A gb and
(11) we get b ≤B f(gb).

(ii) For a ≤A a′ we get g(fa) ≤A a′ by (i), and with (11) then fa ≤B fa′. Hence
f is monotone. Likewise for g: From b ≤B b′ and b′ ≤B f(gb′) of (i) we get
b ≤B f(gb′), so gb ≤A gb′ by (11).

(iii) f ◦ g ◦ f = f : By (i) we have g(fa) ≤A a and by (ii) f is monotone, so
f(g(fa)) ≤B fa. For b = fa in (i) we get fa ≤B f(g(fa)), so in combination
we have f(g(fa)) = fa.
g ◦ f ◦ g = g: By (i) we have b ≤B f(gb), and by (ii) g is monotone, so
gb ≤A g(f(gb)). For a = gb in (i) we get g(f(gb)) ≤A gb. Taken together,
this gives g(f(gb)) = gb.

5 Ryo Yoshinaka: “I am afraid relativized lattices do not have quite a right property
to base on for learning.”, personal communication, February 2013

(iv) By (i), b ≤ f(gb), so f ◦ g is extending. Since by (ii) g and f are monotone,
so is f ◦ g. By (iii), f ◦ g ◦ f ◦ g = f ◦ g, so f ◦ g is idempotent. It follows that
f ◦ g is a closure operator on (B,≤B).

Since g ◦ f is shrinking with respect to ≤A, it is extending with respect to
≥A. As f and g are monotone with respect to ≤A and ≤B , g ◦f is monotone
with respect to ≤A, hence also with respect to ≥A. By (iii), g◦f ◦g◦f = g◦f ,
so g ◦ f is idempotent. Thus, it is a closure operator on (A,≥A).

(v) Let g(B) = {gb | b ∈ B} be the set of “small” elements of A and f(A) =
{f(a) | a ∈ A} be the set of “large” elements of B. Then

f : (g(B),≤A) � (f(A),≤B) : g

is a pair of order preserving embeddings. Moreover, g : f(A) → g(B) is
the inverse of f : g(B) → f(A), since by (iii) for each b ∈ B we have
f(g(b)) ∈ f(A), and g(f(g(b))) = g(b). Likewise is f : g(B) → f(A) the
inverse of g : f(A)→ g(B).

Appendix 2

Example 2. Let L be the Dyck-language of well-bracketed strings over the al-
phabet Σ = {a, b} of opening bracket a and closing bracket b, given in the
enumeration L = {w1, w2, w3, w4, . . .} = {ab, aabb, abab, ε, . . .}. To determine
G(K,L, F) = (V,Σ, P, S), we compute V = PKF (F) \ {∅} and X ◦KF Y =
(XKY K)F for X,Y ∈ V . Then we need to check if ◦KF is almost total and
compute the next grammar and context set.

n = 0: E0 = ∅, K0 = {ε, a, b}, F0 = {(ε, ε)}. To determine G0 = G(K0, L, F0)
= (V0, Σ, P0, S0), we compute V0 = PK0F0(F0)\{∅} andX◦K0F0Y forX,Y ∈ V0.

C ⊆ F0 C
K0 CK0F0 V0

∅ K0 ∅ −
(ε, ε) ε (ε, ε) ⊥

>
6

⊥

XK0Y K0 (ε, ε)
(ε, ε) ε

X ◦K0F0 Y (ε, ε)
(ε, ε) (ε, ε)

Hence, S0 = ⊥ and P0 = {⊥ → ⊥⊥ | ε}, as ⊥ ⊆ (⊥ ◦K0F0 ⊥), ⊥ ⊆ ⊥ = εF0 ,
and ⊥ 6⊆ ∅ = aF0 = bF0 .

n = 1: We have E1 = {ab}, K1 = {ε, a, b, ab}, and

C ⊆ F0 CK1 CK1F0 V1
∅ K1 ∅ −

(ε, ε) ε+ ab (ε, ε) ⊥

XK1Y K1 (ε, ε)
(ε, ε) ε+ ab+ (ab)2

X ◦K1F0 Y (ε, ε)
(ε, ε) (ε, ε)

Since (ε, ε) = (ε, ε)K1F0 , ◦K1F0 is almost total, hence G1 = G(K1, L, F0) has
S1 = ⊥ and P1 = {⊥ → ε | ⊥⊥}. So E1 6⊆ L(G1) = {ε} and F1 = Con(E1) =
{(ε, ε), (ε, b), (a, ε), (a, b), (ε, ab), (ab, ε)}

n = 2: We have E2 = {ab, aabb} and K2 = {ε, a, b, ab, aa, bb, aab, abb, aabb}.

C ⊆ F1 CK2 CK2F1 V2
∅ K2 ∅ −

(ε, ε) ε+ ab+ a2b2 (ε, ε) + (a, b) + (ε, ab) + (ab, ε) −
(ε, b) a+ a2b (ε, b) A
(a, ε) b+ ab2 (a, ε) B
(a, b) ε+ ab+ a2b2 (ε, ε) + (a, b) + (ε, ab) + (ab, ε) −
(e, ab) ε+ ab+ a2b2 (ε, ε) + (a, b) + (ε, ab) + (ab, ε) −
(ab, ε) ε+ ab+ a2b2 (ε, ε) + (a, b) + (ε, ab) + (ab, ε) −

(ε, ε) + (a, b) ε+ ab+ a2b2 (ε, ε) + (a, b) + (ε, ab) + (ab, ε) −
. . . −

(ε, ε) + (a, b) ε+ ab+ a2b2 (ε, ε) + (a, b) + (ε, ab) + (ab, ε) D
+(ε, ab) + (ab, ε)

· · · ∅ F1 −
F1 ∅ F1 ⊥

>

A B
�
��

A
AK6

D

A
A
A
AAK

�
�
�
���6

⊥

For XK2Y K2 and X ◦K2F1 Y = (XK2Y K2)F1 we obtain

XK2Y K2 A B D ⊥
A a2 + a3b ab+ a2b2 a2b+ a3b2 ∅

+a2ba+ a2ba2b +a2bab2 +a2bab+ a2ba2b2

B ba+ ba2b b2 + bab2 bab+ ba2b2 ∅
+ab2a+ ab2a2b +ab3 + ab2ab2 +ab2ab+ ab2a2b2

D aba+ aba2b ab2 + abab2 (ab)2 + aba2b2 ∅
+a2b2a+ a2b2a2b +a2b3 + a2b2ab2 +a2b2ab+ (a2b2)2

⊥ ∅ ∅ ∅ ∅

and

◦K2F1 A B D ⊥
A ∅ D A ⊥
B (a, b) ∅ B ⊥
D A B D ⊥
⊥ ⊥ ⊥ ⊥ ⊥

Since (B◦K2F1A) = (a, b) 6= (a, b)K2F1 , ◦K2F1 is not almost total. Hence G2 = G1

and F2 = F1.

n = 3: We have E3 = {ab, a2b2, abab}, K3 = {ε, a, b, ab, aa, bb, ba, a2b, ab2,
aba, bab, a2b2, (ab)2}.

C ⊆ F1 CK3 CK3F1 V3
∅ K2 ∅ −

(ε, ε) ε+ ab+ a2b2 + (ab)2 (ε, ε) + (a, b) + (ε, ab) + (ab, ε) −
(ε, b) a+ a2b+ aba (ε, b) A
(a, ε) b+ ab2 + bab (a, ε) B
(a, b) ε+ ab+ a2b2 + ba+ (ab)2 (a, b) E
(e, ab) ε+ ab+ a2b2 + (ab)2 (ε, ε) + (a, b) + (ε, ab) + (ab, ε) −
(ab, ε) ε+ ab+ a2b2 + (ab)2 (ε, ε) + (a, b) + (ε, ab) + (ab, ε) −

(ε, ε) + (a, b) ε+ ab+ a2b2 + (ab)2 (ε, ε) + (a, b) + (ε, ab) + (ab, ε) −
. −

(ε, ε) + (a, b) ε+ ab+ a2b2 + (ab)2 (ε, ε) + (a, b) + (ε, ab) + (ab, ε) S
+(ε, ab) + (ab, ε)

· · · ∅ F1 −
F1 ∅ F1 ⊥

This leads to the following lattice B(L,F1), where the operation ◦K3F1 is almost
total on PK3F1(F1):

>

A B
�
��

A
AK6

E

A
A
A
AAK

�
�
�
���6

S

6

⊥

◦K3F1 A B E S ⊥
A ∅ S A A ⊥
B E ∅ ∅ B ⊥
E ∅ B E E ⊥
S A B E S ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

We get εF1 = (ε, ε) + (a, b) + (ab, ε) + (ε, ab) = S, aF1 = (ε, b) = A, bF1 = (a, e) =
B, S3 = S, and

P3 =


A→ a | AE | AS | SA,
B → b | BS | EB | SB,
E → ε | AB | BA | EE | ES, | SE | SS,
S → ε | AB | SS


where we omitted rules for ⊥, like ⊥ → A⊥, since6 ⊥ is not reachable from S,
whence ⊥ is an unnecessary symbol. This is a grammar for L.

Since the inferred grammars contain all rules that are “correct” with respect
to B(L,F), the grammars often may be simplified by omiting some rules.

Acknowledgement

I wish to thank A. Clark for email discussions and W. Buszkowski and R. Yoshi-
naka for pointing out mistakes in a draft version and for a hint to Jipsen e.a.[4].

6 Slight mistakes with ⊥ corrected on Nov. 11th, 2014

References

1. Alexander Clark. A learnable representation for syntax using residuated lattices. In
Proceedings of the 14th Conference on Formal Grammar, Bordeaux, France, 2009.
LNCS 5591, pages 183–198. Springer Verlag, Berlin, 2009.

2. Alexander Clark. Learning context free grammars with the syntactic concept lattice.
In 10th International Colloquium on Grammatical Inference, ICGI 2010, Valencia.
LNAI 6339, pages 38–51. Springer Verlag, Berlin, 2010.

3. Zellig S. Harris. From morpheme to utterance.Language, 22(3):161–83, 1946.
4. P. Jipsen and C. Tsinakis. A survey of residuated lattices. In J. Martinez, editor,

Ordered Algebraic Structures, pages 19–56. Kluwer, 2002.
5. Hans Leiß. Learning CFGs with the finite context property. A note on A. Clark’s

algorithm. Universität München, CIS, Manuscript, July 2012.
6. John E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979.
7. Christian Wurm. Completeness of full Lambek calculus for syntactic concept lat-

tices. In Formal Grammar. 17th and 18th International Conferences, FG 2012 and
FG 2014, Proceedings, LNCS 8036, pages 126–141. Springer-Verlag, Berlin, 2013.

8. Ryo Yoshinaka. Towards dual approaches for learning context-free grammars based
on syntactic concept lattices. In G. Maury and A. Leporati, editors, Developments
in Language Theory. 15th International Conference, DLT 2011, Milan, Italy, July
19-22, 2011. Proceedings, pages 429–440. Springer Verlag, Berlin Heidelberg, 2011.

