Skip to main content

Role of Occlusion in Non-Coulombic Slip of the Finger Pad

  • Conference paper
  • First Online:
Haptics: Neuroscience, Devices, Modeling, and Applications (EuroHaptics 2014)

Abstract

Understanding how fingers slip on surfaces is essential for elucidating the mechanisms of haptic perception. This paper describes an investigation of the relationship between occlusion and the non-Coulombic slip of the finger pad, which results in the frictional force being a power law function of the normal load, with an index \( n \); Coulombic slip corresponds to \( n = 1 \). For smooth impermeable surfaces, occlusion of moisture excreted by the sweat glands may cause up to an order of magnitude increase in the coefficient of friction with a characteristic time of ~20 s. This arises because the moisture plasticises the asperities on the finger print ridges resulting in an increase in their compliance and hence an increase in the contact area. Under such steady state sliding conditions a finger pad behaves like a Hertzian contact decorated with the valleys between the finger print ridges, which only act to reduce the true but not the nominal contact area. In the limit, at long occlusion times (~50 s), it can be shown that the power law index tends to a value in the range \( {2 \mathord{\left/ {\vphantom {2 {3 \le n \le 1}}} \right. \kern-0pt} {3 \le n \le 1}} \). In contrast, measurements against a rough surface demonstrate that the friction is not affected by occlusion and that a finger pad exhibits Coulombic slip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krueger, L.E.: Tactual perception in historical perspective: David Katz’s world of touch. In: Schiff, W., Foulke, E. (eds.) Tactual Perception; A Sourcebook, pp. 1–55. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  2. Bensmaia, S.J., Hollins, M., Washburn, S.: Vibrotactile adaptation impairs discrimination of fine, but not coarse textures. Somatosensory Motor Res. 18, 253–262 (2001)

    Article  Google Scholar 

  3. Wiertlewski, M., Endo, S., Wing, A.M., Hayward, V.: Slip-induced vibration influences the grip reflex: a pilot study. In: Proceedings of the 2013 World Haptics Conference, pp. 627–632 (2013)

    Google Scholar 

  4. Adams, M.J., Johnson, S.A., Lefèvre, P., Lévesque, V., Hayward, V., André, T., Thonnard, J.L.: Finger pad friction and its role in grip and touch. J. R. Soc. Interf. 10, 20120467 (2013)

    Article  Google Scholar 

  5. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  6. Terekhov, A., Hayward, V.: Minimal adhesion surface area in tangentially loaded digital contacts. J. Biomech. 44, 2508–2510 (2011)

    Article  Google Scholar 

  7. Cartmill, M.: The volar skin of primates: its frictional characteristics and their functional significance. Am. J. Phys. Anthrop. 50, 497–509 (1979)

    Article  Google Scholar 

  8. Warman, P.H., Ennos, A.R.: Fingerprints are unlikely to increase the friction of primate fingerpads. J. Exp. Biol. 212, 2016–2022 (2009)

    Article  Google Scholar 

  9. Wandersman, E., Candelier, R., Debrégeas, G., Prevost, A.: Texture-induced modulations of friction force: the fingerprint effect. Phys. Rev. Lett. 107, 164301 (2011)

    Article  Google Scholar 

  10. Wiertlewski, M., Hudin, C., Hayward, V.: On the 1/f noise and non-integer harmonic decay of the interaction of a finger sliding on flat and sinusoidal surfaces. In: Proceedings of the 2011 World Haptics Conference, pp. 25–30 (2011)

    Google Scholar 

  11. Briscoe, B.J., Arvanitaki, A., Adams, M.J., Johnson, S.A.: The friction and adhesion of elastomers. Trib. Ser. 9, 661–672 (2001)

    Article  Google Scholar 

  12. Pasumarty, S.M., Johnson, S.A., Watson, S.A., Adams, M.J.: Friction of the human finger pad: influence of moisture, occlusion velocity. Trib. Lett. 44, 117–137 (2011)

    Article  Google Scholar 

  13. Andre, T., Levesque, V., Hayward, V., Lefevre, P., Thonnard, J.L.: Effect of skin hydration on the dynamics of fingertip gripping contact. J. R. Soc. Interf. 6, 1574–1583 (2011)

    Article  Google Scholar 

  14. Archard, J.F.: Elastic deformation and the laws of friction. Proc. R. Soc. Lond. A, Math. Phys. Sci. 243, 190–205 (1957)

    Article  Google Scholar 

  15. Tomlinson, S.E., Carré, M.J., Lewis, R., Franklin, S.E.: Human finger contact with small, triangular ridged surfaces. Wear. 271, 2346–2353 (2011)

    Article  Google Scholar 

  16. Pawluk, D.T., Howe, R.D.: Dynamic contact of the human fingerpad against a flat surface. ASME J. Biomech. Eng. 121, 605–610 (1999)

    Article  Google Scholar 

  17. Lin, D.C., Shreiber, D.I., Dimitriadis, E.K., Horkay, F.: Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models. Biomech. Model. Mechanobiol. 8, 345–358 (2009)

    Article  Google Scholar 

  18. Adams, M.J., McKeown, R., Whall, A.: A micromechanical model of the confined uniaxial compression of an assembly of elastically deforming spherical particles. J. Phys. D Appl. Phys. 30, 912–920 (1997)

    Article  Google Scholar 

  19. Derler, S., Rossi, R.M., Rotaru, G.M.: Understanding the variation of friction coefficients of human skin as a function of skin hydration and interfacial water films. Proc. Inst. Mech. Eng. Pt. J: J. Eng. Trib. (2014). doi:10.1177/1350650114527922

Download references

Acknowledgements

This work was funded by the FP7 Marie Curie Initial Training Network PROTOTOUCH, grant agreement No. 317100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dzidek, B.M., Adams, M., Zhang, Z., Johnson, S., Bochereau, S., Hayward, V. (2014). Role of Occlusion in Non-Coulombic Slip of the Finger Pad. In: Auvray, M., Duriez, C. (eds) Haptics: Neuroscience, Devices, Modeling, and Applications. EuroHaptics 2014. Lecture Notes in Computer Science(), vol 8618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44193-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44193-0_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44192-3

  • Online ISBN: 978-3-662-44193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics