Skip to main content

Data-Driven Texture Rendering with Electrostatic Attraction

  • Conference paper
  • First Online:
Haptics: Neuroscience, Devices, Modeling, and Applications (EuroHaptics 2014)

Abstract

In this paper, we present a data-driven haptic rendering method applied to a tactile display based on electrostatic attraction force. For realistic virtual textures, surface data from three materials is collected using an accelerometer and then replayed on the electrostatically-actuated tactile display. The proposed data-driven texture rendering method was compared with the standard square wave excitation through a psychophysical experiment. Subjects rated similarities between real samples and virtual textures rendered by both methods. Results show that the virtual textures generated with the data-driven method had significantly higher percentage of similarity with the real textures in comparison to the square wave signal. In addition, the proposed method resulted in higher number of correct matches between virtual models and real materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer, D.J., Peshkin, M.A., Colgate, J.E.: Fingertip friction modulation due to electrostatic attraction. In: 2013 World Haptics Conference (WHC), pp. 43–48 (2013)

    Google Scholar 

  2. Nara, T., Takasaki, M., Maeda, T., Higuchi, T., Ando, S., Tachi, S.: Surface acoustic wave tactile display. IEEE Comput. Graph. Appl. 21(6), 56–63 (2001)

    Article  Google Scholar 

  3. Winfield, L., Glassmire,J., Colgate, J.E., Peshkin, M.: T-PaD: tactile pattern display through variable friction reduction. In: Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07), pp. 421–426 (2007)

    Google Scholar 

  4. Biet, M., Giraud, F., Lemaire-Semail, B.: Implementation of tactile feedback by modifying the perceived friction. Eur. Phys. J. Appl. Phys. 43(01), 123–135 (2008)

    Article  Google Scholar 

  5. Strong, R., Troxel, D.: An electrotactile display. IEEE Trans. Man Mach. Syst. 11(1), 72–79 (1970)

    Article  Google Scholar 

  6. Bau, O., Poupyrev, I., Israr, A., Harrison, C.: TeslaTouch: electrovibration for touch surfaces. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology -UIST’10, pp. 283–292 (2010)

    Google Scholar 

  7. Linjama, J., Makinen, V.: E-Sense screen: novel haptic display with capacitive electrosensory interface. In: HAID 2009, 4th Workshop for Haptic and Audio Interaction Design (2009)

    Google Scholar 

  8. Radivojevic, Z., Beecher, P., Bower, C., Haque, S., Andrew, P., Hasan, T., Bonaccorso, F., Ferrari, A.C., Henson, B.: Electrotactile touch surface by using transparent graphene. In: Proceedings of 2012 Virtual Reality International Conference - VRIC ’12, p. 1 (2012)

    Google Scholar 

  9. Wijekoon, D., Cecchinato, M.E., Hoggan, E., Linjama, J.: Electrostatic modulated friction as tactile feedback: intensity perception. In: Haptics: Perception, Devices, Mobility, and Communication, pp. 613–624 (2012)

    Google Scholar 

  10. Kim, S.-C., Israr, A., Poupyrev, I.: Tactile rendering of 3D features on touch surfaces. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology - UIST ’13, pp. 531–538 (2013)

    Google Scholar 

  11. Meyer, D., Wiertlewski, M., Peshkin, M., Colgate, E.: Dynamics of ultrasonic and electrostatic friction modulation for rendering texture on haptic surfaces. In: Proceedings of IEEE Haptics Symposium (2014)

    Google Scholar 

  12. Höver, R., Di Luca, M., Harders, M.: User-based evaluation of data-driven haptic rendering. ACM Trans. Appl. Percept. 8(1), 1–23 (2010)

    Article  Google Scholar 

  13. Romano, J.M., Kuchenbecker, K.J.: Creating realistic virtual textures from contact acceleration data. IEEE Trans. Haptics 5(2), 109–119 (2012)

    Article  Google Scholar 

  14. Hover, R., Harders, M., Szekely, G.: Data-driven haptic rendering of visco-elastic effects. In: 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2008)

    Google Scholar 

  15. Wiertlewski, M., Lozada, J., Hayward, V.: The spatial spectrum of tangential skin displacement can encode tactual texture. IEEE Trans. Robot. 27(3), 461–472 (2011)

    Article  Google Scholar 

  16. Horenstein, M., Bifano, T., Pappas, S.: Real time optical correction using electrostatically actuated MEMS devices. J. Electrostat. 46, 91–101 (1999)

    Article  Google Scholar 

  17. Cornsweet, T.N.: The Staircase-method in psychophysics. Am. J. Psychol. 75(3), 485–491 (1962)

    Article  Google Scholar 

Download references

Acknowledgement

This work was in part supported by the Scientific and Technological Research Council of Turkey (TUBITAK, # 113E601) and Bogazici University Research Fund (# 7203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evren Samur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ilkhani, G., Aziziaghdam, M., Samur, E. (2014). Data-Driven Texture Rendering with Electrostatic Attraction. In: Auvray, M., Duriez, C. (eds) Haptics: Neuroscience, Devices, Modeling, and Applications. EuroHaptics 2014. Lecture Notes in Computer Science(), vol 8618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44193-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44193-0_62

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44192-3

  • Online ISBN: 978-3-662-44193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics