Skip to main content

Toward Active Boundary Conditions for Variable Friction Touchscreens

  • Conference paper
  • First Online:
Haptics: Neuroscience, Devices, Modeling, and Applications (EuroHaptics 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8618))

  • 2395 Accesses

Abstract

Variable friction touchscreens rely on ultrasonic plate vibrations to generate tactile effects on the surface. We propose using active boundary conditions (dynamically changing plate boundary conditions) for generating haptic perceptions from variable friction touchscreens. This method has several advantages over current designs including enabling greater control over the plate’s mode shape and the potential to generate new tactile effects on the plate surface. To explore the feasibility of this novel technique, we developed a plate model in ANSYS and conducted a series of simulations investigating three boundary condition parameters: location of the constraint, length of the constraint, and the “stiffness” of the constraint. We conclude that a variable stiffness boundary condition offers great potential for enabling systematic control of mode shapes and opens up possibilities of generating new tactile effects from these surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banter, B.: Touch screens and touch surfaces are enriched by haptic force-feedback. Inf. Disp. 26, 26–30 (2010)

    Google Scholar 

  2. Benali-Khoudja, M., Hafez, M., Alexandre, J.M., Kheddar, A.: Tactile interfaces: a state-of-the-art survey. In: International Symposium on Robotics (2004)

    Google Scholar 

  3. Chubb, E.C., Colgate, J.E., Peshkin, M.A.: Shiverpad: a glass haptic surface that produces shear force on a bare finger. IEEE Trans. Haptics 3, 189–198 (2010)

    Article  Google Scholar 

  4. Poupyrev, I., Maruyama, S.: Tactile interfaces for small touch screens. In: Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, pp. 217–220 (2003)

    Google Scholar 

  5. Hoggan, E., Brewster, S.A., Johnston, J.: Investigating the effectiveness of tactile feedback for mobile touchscreens. In: Proceedings of the 26th Annual SIGCHI Conference on Human Factors in Computing Systems, pp. 1573–1582 (2008)

    Google Scholar 

  6. Levesque, V., Oram, L., MacLean, K., Cockburn, A., Marchuk, N.D., Johnson, D., Colgate, J.E., Peshkin, M.A.: Enhancing physicality in touch interaction with programmable friction. In: Computer and Human Interaction, pp. 2481–2490 (2011)

    Google Scholar 

  7. Pitts, M.J., Burnett, G.E., Skrypchuk, L., Wellings, T., Attridge, A., Williams, M.A.: Visual-haptic feedback interaction in automotive touchscreens. Displays 33, 7–16 (2012)

    Article  Google Scholar 

  8. Leung, R., MacLean, K., Bertelsen, M.B., Saubhasik, M.: Evaluation of a haptically augmented touchscreen gui elements under congitive load. In: International Conference on Multimodal Interfaces, pp. 374–381 (2007)

    Google Scholar 

  9. Artificial Muscle Inc.: ViviTouch Technology (2012). http://www.artificialmuscle.com. Accessed March 2012

  10. Bau, O., Poupyrev, I., Israr, A., Harrison, C.: Teslatouch: electrovibration for touch surfaces. In: Proceedings of User Interface Software and Technology (UIST), pp. 283–292 (2010)

    Google Scholar 

  11. Yamamoto, A., Ishii, T., Higuchi, T.: Electrostatic tactile display for presenting surface roughness sensation. In: IEEE Conference on Industrial Technology, pp. 680–684 (2003)

    Google Scholar 

  12. Takasaki, M., Kotani, H., Mizuno, T., Nara, T.: Transparent surface acoustic wave tactile display. In: International Conference on Intelligent Robots and Systems, pp. 3354–3359 (2005)

    Google Scholar 

  13. Biet, M., Giraud, F., Lemaire-Semail, B.: Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 54(12), 2678–2688 (2007)

    Article  Google Scholar 

  14. Biet, M., Giraud, F., Lemaire-Semail, B.: Implementation of tactile feedback by modifying the perceived friction. Eur. Phys. J. Appl. Phys. 43, 123–145 (2008)

    Article  Google Scholar 

  15. Biet, M., Casiez, G., Giraud, F., Lemaire-Semail, B.: Discrimination of virtual square gratings by dynamic touch on friction based tactile displays. In: Proceedings of Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 41–48, March 2008

    Google Scholar 

  16. Marchuk, N.D., Colgate, J.E., Peshkin, M.A.: Friction measurements on a large area tpad. In: IEEE Haptics Symposium, pp. 317–320 (2010)

    Google Scholar 

  17. Mullenbach, J., Johnson, D., Colgate, J., Peshkin, M.: Activepad surface haptic device. In: IEEE Haptics Symposium (2012) BC: 4074–414

    Google Scholar 

  18. Mullenbach, J., Shultz, C., Marie Piper, A., Peshkin, M., Colgate, J.: Tpad fire: surface tablet. In: HAID Haptic and Audio Interaction Design (2013)

    Google Scholar 

  19. Son, K.J., Kim, M., Kim, K.: Analytical modeling of disk-type piezoelectric variable friction tactile displays. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), July 2013

    Google Scholar 

  20. Watanabe, T., Fukui, S.: A method for controlling tactile sensation of suface roughness using ultrasonic vibration. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 1134–1139 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenna Gorlewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, H., Katumu, K., Gorlewicz, J. (2014). Toward Active Boundary Conditions for Variable Friction Touchscreens. In: Auvray, M., Duriez, C. (eds) Haptics: Neuroscience, Devices, Modeling, and Applications. EuroHaptics 2014. Lecture Notes in Computer Science(), vol 8618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44193-0_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44193-0_67

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44192-3

  • Online ISBN: 978-3-662-44193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics