Skip to main content

A High-Fidelity Surface-Haptic Device for Texture Rendering on Bare Finger

  • Conference paper
  • First Online:
Haptics: Neuroscience, Devices, Modeling, and Applications (EuroHaptics 2014)

Abstract

We present the design and evaluation of a high fidelity surface-haptic device. The user slides a finger along a glass plate while friction is controlled via the amplitude modulation of ultrasonic vibrations of the plate. A non-contact finger position sensor and low latency rendering scheme allow for the reproduction of fine textures directly on the bare finger. The device can reproduce features as small as 25 \(\upmu \)m while maintaining an update rate of 5 kHz. Signal attenuation, inherent to resonant devices, is compensated with a feedforward filter, enabling an artifact-free rendering of virtual textures on a glass plate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergmann-Tiest, W.M., Kappers, A.M.L.: Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Psychol. 121(1), 1–20 (2006)

    Article  Google Scholar 

  2. Smith, A.M., Chapman, C.E., Deslandes, M., Langlais, J.S., Thibodeau, M.P.: Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp. Brain Res. 144(2), 211–223 (2002)

    Article  Google Scholar 

  3. Bensmaïa, S., Hollins, M.: The vibrations of texture. Somatosens. Mot. Res. 20(1), 33–43 (2003)

    Article  Google Scholar 

  4. Minsky, M., Lederman, S.: Simulated haptic textures: roughness. In: Proceedings of the ASME Dynamic Systems and Control Division, vol. 58, pp. 421–426 (1996)

    Google Scholar 

  5. Campion, G., Hayward, V.: Fundamental limits in the rendering of virtual haptic textures. In: IEEE World Haptics Conference, pp. 263–270 (2005)

    Google Scholar 

  6. Wiertlewski, M., Lozada, J., Hayward, V.: The spatial spectrum of tangential skin displacement can encode tactual texture. IEEE Trans. Robot. 27(3), 461–472 (2011)

    Article  Google Scholar 

  7. Watanabe, T., Fukui, S.: A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: IEEE ICRA, pp. 1134–1139, May 1995

    Google Scholar 

  8. Biet, M., Giraud, F., Lemaire-Semail, B.: Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 54(12), 2678–2688 (2007)

    Article  Google Scholar 

  9. Winfield, L., Glassmire, J., Colgate, J.E., Peshkin, M.: T-pad: tactile pattern display through variable friction reduction. In: IEEE World Haptics Conference, pp. 421–426 (2007)

    Google Scholar 

  10. Giraud, F., Amberg, M., Lemaire-Semail, B.: Design and control of a haptic knob. Sens. Actuators, A Phys. 196, 78–85 (2013)

    Article  Google Scholar 

  11. Meyer, D.J., Wiertlewski, M., Peshkin, M., Colgate, J.E.: Dynamics of ultrasonic and electrostatic friction modulation for rendering texture on haptic surfaces. In: Proceedings of Haptic Symposium, pp. 218–226. IEEE (2014)

    Google Scholar 

  12. Bolanowski Jr, S.J., Gescheider, G.A., Verrillo, R.T., Checkosky, C.M.: Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84, 1680 (1988)

    Article  Google Scholar 

  13. Okamoto, S., Konyo, M., Saga, S., Tadokoro, S.: Detectability and perceptual consequences of delayed feedback in a vibrotactile texture display. IEEE Trans. Haptics 2(2), 73–84 (2009)

    Article  Google Scholar 

  14. Smith, A.M., Gosselin, G., Houde, B.: Deployment of fingertip forces in tactile exploration. Exp. Brain Res. 147(2), 209–218 (2002)

    Article  Google Scholar 

  15. Skedung, L., Arvidsson, M., Chung, J.Y., Stafford, C.M., Berglund, B., Rutland, M.W.: Feeling small: exploring the tactile perception limits. Sci. Rep. 3 (2013)

    Google Scholar 

  16. Millet, G., Haliyo, S., Regnier, S., Hayward, V.: The ultimate haptic device: first step. In: IEEE World Haptics Conference, pp. 273–278 (2009)

    Google Scholar 

  17. Verrillo, R.T.: Effect of contactor area on the vibrotactile threshold. J. Acoust. Soc. Am. 35, 1962 (1963)

    Article  Google Scholar 

  18. Wiertlewski, M., Hayward, V.: Mechanical behavior of the fingertip in the range of frequencies and displacements relevant to touch. J. Biomech. 45(11), 1869–1874 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Science Foundation, grants No. IIS-0964075 and IIS-1302422. The authors acknowledge the help of Daniel Russman in the development of the experimental platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Wiertlewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiertlewski, M., Leonardis, D., Meyer, D.J., Peshkin, M.A., Colgate, J.E. (2014). A High-Fidelity Surface-Haptic Device for Texture Rendering on Bare Finger. In: Auvray, M., Duriez, C. (eds) Haptics: Neuroscience, Devices, Modeling, and Applications. EuroHaptics 2014. Lecture Notes in Computer Science(), vol 8619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44196-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44196-1_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44195-4

  • Online ISBN: 978-3-662-44196-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics