Abstract
In this work, we study the structure of skew constacyclic codes over the ring R = F 4[v]/〈v 2 − v〉 which is a non chain ring with 16 elements where F 4 denotes the field with 4 elements and v an indeterminate. We relate linear codes over R to codes over F 4 by defining a Gray map between R and \(F_{4}^{2}.\) Next, the structure of all skew constacyclic codes is completely determined. Furthermore, we construct DNA codes over R.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hammons Jr., A.R., Kumar, P.V., Calderbank, J.A., Sloane, N.J.A., Sole, P.: The Z-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory. 40(2), 301–319 (1994)
Yildiz, B., Karadeniz, S.: Linear codes over F 2 + uF 2 + vF 2 + uvF 2. Des. Codes Crypt. 54, 61–81 (2010)
Oztas, E.S., Siap, I.: Lifted Polynomials Over F 16 and Their Applications to DNA Codes. Filomat 27(3), 459–466 (2013)
Gursoy, F., Siap, I., Yildiz, B.: Construction of Skew Cylic Codes Over F q + vF q . Advances in Mathematics of Communications (accepted, 2014)
Siap, I., Abualrub, T., Ghrayeb, A.: Cyclic DNA codes over the ring F 2[u]/(u 2 − 1) based on the deletion distance. Journal of the Franklin Ins. 346, 731–740 (2006)
Siap, I., Abualrub, T., Aydin, N., Seneviratne, P.: Skew cyclic codes of arbitrary length. Int. J. Inf. Coding Theory 2, 10–20 (2011)
Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)
Jitman, S., Ling, S., Udomkavanich, P.: Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications 6, 39–63 (2012)
Zhu, S., Wang, Y.: A class of constacyclic codes over F p + vFp and their Gray image Discrete. Math. Theory 311, 2677–2682 (2011)
Zhu, S., Wang, Y., Shi, M.: Some result on cyclic codes over F 2 + vF 2. IEEE Trans. Inform. Theory 56(4), 1680–1684 (2010)
Abualrub, T., Ghrayeb, A., Zeng, X.N.: Consruction of cyclic codes over F 4 for DNA computing. Journal of the Franklin Ins. 343, 448–457 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bayram, A., Oztas, E.S., Siap, I. (2014). Codes over a Non Chain Ring with Some Applications. In: Hong, H., Yap, C. (eds) Mathematical Software – ICMS 2014. ICMS 2014. Lecture Notes in Computer Science, vol 8592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-662-44199-2_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44198-5
Online ISBN: 978-3-662-44199-2
eBook Packages: Computer ScienceComputer Science (R0)