Abstract
We present the main algorithmic and design choices that have been made to represent complexes and compute persistent homology in the Gudhi library. The Gudhi library (Geometric Understanding in Higher Dimensions) is a generic C++ library for computational topology. Its goal is to provide robust, efficient, flexible and easy to use implementations of state-of-the-art algorithms and data structures for computational topology. We present the different components of the software, their interaction and the user interface. We justify the algorithmic and design decisions made in Gudhi and provide benchmarks for the code. The software, which has been developped by the first author, will be available soon at project.inria.fr/gudhi/software/ .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bauer, U., Kerber, M., Reininghaus, J.: Clear and compress: Computing persistent homology in chunks. In: Topological Methods in Data Analysis and Visualization III, pp. 103–117 (2014)
Boissonnat, J.-D., Dey, T.K., Maria, C.: The compressed annotation matrix: An efficient data structure for computing persistent cohomology. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 695–706. Springer, Heidelberg (2013)
Boissonnat, J.-D., Maria, C.: Computing Persistent Homology with Various Coefficient Fields in a Single Pass. Rapport de recherche RR-8436, INRIA (December 2013)
Boissonnat, J.-D., Maria, C.: The simplex tree: An efficient data structure for general simplicial complexes. Algorithmica, 1–22 (2014)
Bubenik, P., Scott, J.A.: Categorification of persistent homology. CoRR, abs/1205.3669 (2012)
Carlsson, G.E., de Ishkhanov, T., Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vision 76, 1–12 (2008)
Carlsson, G.E., de Silva, V.: Zigzag persistence. Foundations of Computational Mathematics 10(4), 367–405 (2010)
Chazal, F., Oudot, S.: Towards persistence-based reconstruction in euclidean spaces. In: Proc. 24th. Annu. Sympos. Comput. Geom., pp. 231–241 (2008)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete & Computational Geometry 37(1), 103–120 (2007)
de Silva, V., Ghrist, R.: Coverage in sensor network via persistent homology. Algebraic & Geometric Topology 7, 339–358 (2007)
de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discrete & Computational Geometry 45(4), 737–759 (2011)
Derksen, H., Weyman, J.: Quiver representations. Notices of the AMS 52(2), 200–206 (2005)
Dey, T.K., Fan, F., Wang, Y.: Computing topological persistence for simplicial maps. In: Symposium on Computational Geometry, p. 345 (2014)
Edelsbrunner, H., Harer, J.: Computational Topology - an Introduction. American Mathematical Society (2010)
Munkres, J.R.: Elements of algebraic topology. Addison-Wesley (1984)
Zomorodian, A., Carlsson, G.E.: Computing persistent homology. Discrete & Computational Geometry 33(2), 249–274 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maria, C., Boissonnat, JD., Glisse, M., Yvinec, M. (2014). The Gudhi Library: Simplicial Complexes and Persistent Homology. In: Hong, H., Yap, C. (eds) Mathematical Software – ICMS 2014. ICMS 2014. Lecture Notes in Computer Science, vol 8592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-662-44199-2_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44198-5
Online ISBN: 978-3-662-44199-2
eBook Packages: Computer ScienceComputer Science (R0)