Abstract
Bertini_real is a command line program for numerically decomposing the real portion of a one- or two-dimensional complex irreducible algebraic set in any reasonable number of variables. Using numerical homotopy continuation to solve a series of polynomial systems via regeneration from a witness set, a set of real vertices is computed, along with connection information and associated homotopy functions. The challenge of embedded singular curves is overcome using isosingular deflation. This decomposition captures the topological information and can be used for further computation and refinement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: The basic algorithm. SIAM Journal on Computing 13(4), 865–877 (1984)
Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for Numerical Algebraic Geometry, http://bertini.nd.edu
Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini, vol. 25. SIAM (2013)
Besana, G.M., Di Rocco, S., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Cell decomposition of almost smooth real algebraic surfaces. Numerical Algorithms 63(4), 645–678 (2013)
Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regeneration homotopies for solving systems of polynomials. Mathematics of Computation 80(273), 345–377 (2011)
Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. Foundations of Computational Mathematics 13(3), 371–403 (2013)
Lu, Y., Bates, D.J., Sommese, A.J., Wampler, C.W.: Finding all real points of a complex curve. Contemporary Mathematics 448, 183–205 (2007)
Sommese, A.J., Verschelde, J., Wampler, C.W.: Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM Journal on Numerical Analysis 38(6), 2022–2046 (2001)
Tong, Y., Myszka, D.H., Murray, A.P.: Four-bar linkage synthesis for a combination of motion and path-point generation. In: Proc. ASME IDETC/CIE 2013, Portland, OR, August 4-7 (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler, C. (2014). Bertini_real: Software for One- and Two-Dimensional Real Algebraic Sets. In: Hong, H., Yap, C. (eds) Mathematical Software – ICMS 2014. ICMS 2014. Lecture Notes in Computer Science, vol 8592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-662-44199-2_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44198-5
Online ISBN: 978-3-662-44199-2
eBook Packages: Computer ScienceComputer Science (R0)