
Capture-Avoiding and Hygienic
Program Transformations (incl. Proofs)

Sebastian Erdweg1, Tijs van der Storm2,3, and Yi Dai4

1 TU Darmstadt, Germany 2 CWI, Amsterdam, The Netherlands
3 INRIA Lille, France 4 University of Marburg, Germany

Abstract. Program transformations in terms of abstract syntax trees
compromise referential integrity by introducing variable capture. Variable
capture occurs when in the generated program a variable declaration
accidentally shadows the intended target of a variable reference. Existing
transformation systems either do not guarantee the avoidance of variable
capture or impair the implementation of transformations.
We present an algorithm called name-fix that automatically eliminates
variable capture from a generated program by systematically renaming
variables. name-fix is guided by a graph representation of the binding
structure of a program, and requires name-resolution algorithms for the
source language and the target language of a transformation. name-fix is
generic and works for arbitrary transformations in any transformation
system that supports origin tracking for names. We verify the correctness
of name-fix and identify an interesting class of transformations for which
name-fix provides hygiene. We demonstrate the applicability of name-fix
for implementing capture-avoiding substitution, inlining, lambda lifting,
and compilers for two domain-specific languages.

1 Introduction

Program transformations find ubiquitous application in compiler construction
to realize desugarings, optimizers, and code generators. While traditionally
the implementation of compilers was reserved for a selected few experts, the
current trend of domain-specific and extensible programming languages exposes
developers to the challenges of writing program transformations. In this paper,
we address one of these challenges: capture avoidance.

A program transformation translates programs from a source language to a
target language. In doing so, many transformations reuse the names that occur in
a source program to identify the corresponding artifacts generated in the target
program. For example, consider the compilation of a state machine to a simple
procedural language as illustrated in Figure 1. The state machine has three states
opened, closed, and locked. For each state the compiler generates a constant integer
function with the same name. Furthermore, for each state the compiler generates
a dispatch function that takes an event and depending on the event returns the
subsequent state. For example, the dispatch function for opened tests if the given
event is close and either yields the integer constant representing the following

ar
X

iv
:1

40
4.

57
70

v1
 [

cs
.P

L
]

 2
3

A
pr

 2
01

4

state opened
close => closed

state closed
lock => locked
open => opened

state locked
unlock => closed

(a) Door state machine.

1 fun opened() = 0;
2 fun closed() = 1;
3 fun locked() = 2;
4 fun opened-dispatch(event) =
5 if (event == "close") then closed() else error();
6 fun closed-dispatch(event) =
7 if (event == "open") then opened()
8 else if (event == "lock") then locked() else error();
9 fun locked-dispatch(event) =

10 if (event == "unlock") then closed() else error();
11 fun main-dispatch-next-event(state, event) =
12 if (state == opened()) then opened-dispatch(event)
13 else if (state == closed()) [...];

(b) Program generated for the door state machine.

Fig. 1. Many transformations reuse names from the source program in generated code.

state closed or a dynamic error. Finally, the compiler generates a main dispatch
function that calls the dispatch function of the current state.

A naive implementation of such compiler is easy to implement, but also
runs the risk of introducing variable capture. For example, if we consistently
rename the state locked to opened-dispatch as shown in Figure 2(a), we expect the
compiler to produce code that behaves the same as the code generated for the
state machine without renaming. However, a naive compiler blindly copies the
state names into the generated program, which leads to the incorrect code shown
in Figure 2(b): The function definition on line 4 shadows the constant function
on line 3 and thus captures the variable reference opened-dispatch on line 8 (we
assume there is no overloading). For the example shown, the problem is easy to
fix by renaming the dispatch function on line 4 and its reference on line 12 to a
fresh name opened-dispatch-0. However, a general solution is difficult to obtain.
Existing approaches either rely on naming conventions and fail to guarantee
capture avoidance, or they require a specific transformation engine and affect
the implementation of transformations.

We propose a generic solution called name-fix that guarantees capture avoid-
ance and does not affect the implementation of transformations. name-fix com-
pares the name graph of the source program with the name graph of the generated
program to identify variable capture. If there is variable capture, name-fix sys-
tematically and globally renames variable names to differentiate the captured
variables from the capturing variables, while preserving intended variable ref-
erences among original variables and among synthesized variables, respectively.
name-fix requires name analyses for the source and target languages, which
often exists or are needed anyway (e.g., for editor services, error checking, or
refactoring), and hence can be reused. name-fix treats transformations as a black
box and is independent of the used transformation engine as long as it supports
origin tracking for names [26].

2

state opened
close => closed

state closed
lock=>opened-dispatch

open => opened

state opened-dispatch
unlock => closed

(a) Consistently renam-
ing door state machine.

1 fun opened() = 0;
2 fun closed() = 1;
3 fun opened-dispatch() = 2;
4 fun opened-dispatch(event) =
5 if (event == "close") then closed() else error();
6 fun closed-dispatch(event) =
7 if (event == "open") then opened()
8 else if (event == "lock") then opened-dispatch() else ...
9 fun opened-dispatch-dispatch(event) =

10 if (event == "unlock") then closed() else error();
11 fun main-dispatch-next-event(state, event) =
12 if (state == opened()) then opened-dispatch(event)
13 else if (state == closed()) [...];

(b) Program generated for the renamed door state machine
is incorrect: Variable capture of opened-dispatch.

Fig. 2. Variable capture can occur when original and synthesized names are mixed.

name-fix enables developers of program transformations to focus on the
actual translation logic and to ignore variable capture. In particular, name-fix
enables developers to use simple naming schemes for synthesized variables in
the transformation and to produce intermediate open terms. For example, in
Figure 1, we append "-dispatch" to a state’s name to derive the name of the
corresponding dispatch function. This construction occurs at two independent
places in the transformation: When generating a dispatch function for a state, and
when generating the main dispatch function. The connection between these is only
established when assembling all parts of the generated program in the final step
of the transformation. Using name-fix , it is safe to apply global naming schemes
with intermediate open terms to associate generated variable references and
declarations. Transformations of this kind fall into the class of transformations
for which name-fix guarantees hygiene, that is, α-equivalent source programs are
always mapped to α-equivalent target programs.

In summary, we make the following contributions:

– We studied 9 existing DSL implementations that use transformations and
found that 8 of them were prone to variable capture.

– We present name-fix , an algorithm that automatically eliminates variable
capture from the result of a program transformation.

– We state and verify termination and correctness properties for name-fix and
show that name-fix produces α-equivalent programs for programs that are
equal up to consistent but possibly capturing renaming.

– We propose a notion of hygienic transformations and identify an interesting
class of transformations for which name-fix provides hygiene.

– We present an implementation of name-fix in the metaprogramming system
Rascal. Our implementation supports capture avoidance for transformations
that generate code as syntax trees or as strings.

3

– We demonstrate the applicability of name-fix in a wide range of scenarios:
for capture-avoiding substitution, for optimization (function inlining), for
desugaring of language extensions (lambda lifting), and for code generation
(compilation of DSLs for state machines and for digital forensics).

2 Capture-avoiding transformations: What and why

Capture avoidance is best known from capture-avoiding substitution: When
substituting an expression e2 under a binder as in λx. (e1[y := e2]), variable
x may not occur free in e2 otherwise the original binding of x in e2 would
be shadowed by the λ. To implement capture-avoiding substitution, we must
rename x to a fresh variable α 6∈ {y} ∪ FV(e1) ∪ FV(e2) to avoid the capture:
λα. (e1[x := α][y := e2]). Ensuring capture avoidance is already relatively
complicated for substitution in the λ-calculus. For larger languages and more
complex program transformations, ensuring capture avoidance is a non-trivial
and error-prone task.

2.1 Variable capture in the wild

To better understand the relevance of the problem of variable capture, we studied
implementations of a DSL for questionnaires in 10 state-of-the-art language
workbenches in the context of the Language Workbench Challenge 2013 [9].1 The
questionnaire DSL features named declarations of questions and named definitions
of derived values. 9 of the 10 language workbenches translate a questionnaire into
a graphical representation using either Java or HTML with CSS and JavaScript
as target language. One workbench uses interpretation instead of transformation.
In most cases, the implementation of the DSL was conducted by the developers
of the workbench themselves.

The result of our study is shocking: The DSL implementations in 8 of the 9
language workbenches that use transformations fail to address capture avoidance
and produce incorrect code even for minimal changes to the definition of a
questionnaire. For example, some implementations fail when a question name is
changed to container, questions, or SWTUtils, because these names are implicitly
reserved for synthesized variables. Other implementations of the DSL use naming
schemes similar to the one we illustrated in the state-machine example. If there
is already a question called Q, these implementations fail when naming another
question QBlock, calculated_Q, or grp_Q. Some of the variable captures result in
compile-time errors of the generated Java code, others result in misbehaved code
that, for example, silently skips some of the questions when storing answers per-
sistently. Debugging such errors typically requires investigation of the generated
code and can be very time-consuming.

Of the studied DSL implementations, only the transformation implemented
in Más addressed variable capture. It uses global name mappings to generate
1 We studied all workbenches of the previous study [9]: Ensō, Más, MetaEdit+, MPS,
Onion, Rascal, Spoofax, SugarJ, the Whole Platform, and Xtext.

4

unique names from source-language variables for the generated code. The usage
of these name mappings and similar approaches is cross-cutting and relies on
the discipline of the developer; it is not enforced or supported by the framework.
We seek a solution that provides stronger guarantees and has less impact on the
implementation of a transformation.

2.2 Problem statement

The goal of this work is to provide a mechanism that avoids variable capture
in code that is generated by program transformations. To this end, we seek a
mechanism that satisfies the following design goals:

G1: Preserve reference intent: If a reference from the source program occurs in the
target program, then the original declaration must also occur in the target
program and the reference is still bound by it. In other words, source-program
variables may neither be captured by synthesized declarations nor by other
source-program declarations.

G2: Preserve declaration extent: If a declaration from the source program occurs
in the target program, then only source-program references may be bound
by it. In other words, synthesized variable references may not be captured by
source-program declarations.

G3: Noninvasive: Avoidance of variable capture should not impact the readability
of generated code. This is important in practice, where the generated code
is often manually inspected when debugging a program transformation. In
particular, a generated program should be left unchanged if it does not
contain variable capture.

G4: Language-parametric: It should be possible to eliminate variable capture from
virtually all source and target languages that feature static name resolution.

G5: Transformation-parametric: The mechanism should work with different trans-
formation engines and should not impose a specific style of transforming pro-
grams. Ideally, the mechanism supports existing transformations unchanged.

In the following sections, we present our solution name-fix . It fully achieves
the first three goals. In addition, name-fix is language-parametric provided the
name analysis of source and target language satisfy modest assumptions. Finally,
name-fix works with any transformation engine that provides origin tracking [26]
for variable names, so that names originating from the source program can be
distinguished from names synthesized by the transformation.

3 Graph-guided elimination of variable capture

The core idea of our solution is to provide a generic mechanism for the detection
and elimination of variable capture based on name graphs of the source and
target program. We use the term name for the string-valued entity that occurs
in the abstract syntax tree of a program. Naturally, the same name may occur at

5

multiple locations of a program. To distinguish different occurrences of the same
name, we assume names are labeled with a variable ID. In source programs, such
IDs are unique. However, for target programs generated by some transformation,
we do not require that variable IDs are unique, because the transformation may
have copied and duplicated names from the input program to the output program.

We write xv to denote that name x is labeled with variable ID v, and we
write p@v to retrieve from program p the name corresponding to variable ID v.
Nodes that share the same ID must have the same name so that p@v is uniquely
determined. The nodes of a name graph are the variable IDs that occur in a
program and the edges connect references to the corresponding declarations.

Definition 1. The name graph of a program p is a pair G = (V, ρ) where
V is the set of variable IDs in p (references and declarations),
ρ ∈ V → V is a partial function from references to declarations,

and if ρ(vr) = vd, then reference and declaration have the same name p@vr= p@vd .

1 4 8

6 2 9 5

Fig. 3. Name graph of state
machine in Figure 1(a).

For example, Figure 3 displays the name graph of
the state machine in Figure 1(a), where we use line
numbers as variable IDs: ID 1 represents the dec-
laration of opened, ID 2 represents the reference to
closed in the transition on line 2, ID 4 represents the
declaration of closed, and so on.

We require that transformations preserve vari-
able IDs when reusing names from the source pro-
gram in the generated code. For example, when compiling the state machine of
Figure 1(a) to the code in Figure 1(b), the compiler reuses the names of state
declarations for the declaration of constant functions and for references to these
constant functions in the main dispatch. Accordingly, in the generated code, these
names must have the same variable ID as in the source program. Essentially,
whenever a transformation copies a name from the source program to the target
program, the corresponding ID must be copied as well and thus preserved. In
contrast, names that are synthesized by the transformation should have fresh
variable IDs.

1 4 8

6 2 9 5

’12 synthesized variables

’4 ’6 ’9 ’11

Fig. 4. Names of compiled
state machine of Figure 1(b).

For example, Figure 4 shows the name graph of
the compiled state machine (we left out nodes of
function parameters event and state for clarity). We
use line numbers from the source program as variable
IDs for reused variables, and ticked line numbers of
the target program as variable IDs for synthesized
variables. In addition, we depict nodes of synthesized
variables with a darker background color. We have
cycles in the name graph for source nodes 1, 4, and
8 because the transformation duplicated the names
at these labels to generate constant functions and
references to these constant functions.

One important property of the name graph in
Figure 4 is that the source nodes are disconnected from the synthesized nodes, and

6

all references from the original name graph in Figure 3 have been preserved. In
contrast, consider the name graph in Figure 5 that displays result of compilation
after renaming state locked to opened-dispatch as in Figure 2(b). The graph
illustrates that a source variable has been captured (dashed arrow) during
compilation: The variable at line 5 of the source program was intended to point
to the state declared at line 8, but after compilation it points to the dispatch
function at line 4 of the synthesized program.

1 4 8

6 2 9 5

’12

’4 ’6 ’9 ’11

Fig. 5. Variable capture
(dashed arrow) in the code of
Figure 2(b).

Our solution identifies variable capture by com-
paring the original name graph of the whole program
with the name graph of the generated code. Func-
tion find-capture in Figure 6 computes the set of
edges that witness variable capture. In the state-
machine example, find-capture finds only one edge
(5 7→ ’4) as part of notPresrvRef1. We discuss the pre-
cise definition of variable capture in the subsequent
section.

If there are witnesses of variable capture, our
solution computes a variable renaming that has two
properties. First, for each witness of variable capture,
the renaming renames the capturing variable to
eliminate the witness. Second, the renaming ensures
that intentional references to the capturing variable are renamed as well. This
can be difficult because the name graph of the generated code is inaccurate due
to variable capture. Therefore, our solution conservatively approximates the set
of potential references by including all synthesized variables of the same name.
Function comp-renaming in Figure 6 computes the renaming as a function from
a variable ID to the variable’s fresh name, computed by gensym. For the example,
we get πsrc = ∅ because ’4 6∈ Vs and πsyn = {’4 7→ "opened-dispatch-0", ’12 7→
"opened-dispatch-0"} because t@’4 = t@’12. Function rename in Figure 6 visits
all nodes in a syntax tree (represented as s-expression) and applies the renaming
π to variables with the corresponding IDs. For the example, the renaming yields
a capture-free program with the same name graph as shown in Figure 4.

Function name-fix in Figure 6 brings it all together and is the main entry
point of our solution. It takes the name graph of the source program and the
generated target program as input. First, it computes the name graph of the
target program using the function resolveT that we assume to provide name
resolution for the target language T . name-fix then calls find-capture to identify
variable capture. If find-capture finds no capturing edges, name-fix returns the
generated program unchanged. Otherwise, name-fix calls comp-renaming and
rename to compute and apply the renaming that eliminates the witnessed variable
capture. Since the name graph Gt of t may be inaccurate due to variable capture,
name-fix recursively calls itself to repeat the search for and potential repair of
variable capture. Note that name-fix applies a closed-world assumption to infer
that all unbound variables are indeed free, and thus can be renamed at will.

7

Syntactic conventions:
xv variable x labeled with variable ID v
p
@v

= x name x that occurs in program p at variable ID v

find-capture((Vs, ρs), (Vt, ρt)) = {
notPresrvRef1 = {(v 7→ ρt(v)) | v ∈ dom(ρt), v ∈ Vs, v ∈ dom(ρs), ρs(v) 6= ρt(v)};
notPresrvRef2 = {(v 7→ ρt(v)) | v ∈ dom(ρt), v ∈ Vs, v 6∈ dom(ρs), v 6= ρt(v)};
notPresrvDef = {(v 7→ ρt(v)) | v ∈ dom(ρt), v 6∈ Vs, ρt(v) ∈ Vs};
return notPresrvRef1 ∪ notPresrvRef2 ∪ notPresrvDef;

}

comp-renaming((Vs, ρs), (Vt, ρt), t, capture) = {
πsrc = ∅;
πsyn = ∅;
foreach vd in codom(capture) {

usedNames = {t@v|v ∈ Vt} ∪ codom(πsrc) ∪ codom(πsyn)
fresh = gensym(t@vd , usedNames);
if (vd ∈ Vs ∧ vd 6∈ πsrc)
πsrc = πsrc ∪ {(vd 7→ fresh)} ∪ {(vr 7→ fresh) | vr ∈ dom(ρs), ρs(vr) = vd};

if (vd 6∈ Vs ∧ vd 6∈ πsyn)
πsyn = πsyn ∪ {(v 7→ fresh) | v ∈ Vt \ Vs, t@v = t@vd};

}
return (πsrc, πsyn);

}

rename(t, π) = {
return t match {
case xv if v ∈ dom(π) => π(v)v

case xv => xv

case c => c
case (t1. . .tn) => (rename(t1, π) . . . rename(tn, π));

}
}

name-fix (Gs, t) = {
Gt = resolve

T(t);

capture = find-capture(Gs, Gt);
if (capture == ∅) return t;

(πsrc, πsyn) = comp-renaming(Gs, Gt, t, capture);
t’ = rename(t, πsrc ∪ πsyn);
return name-fix (Gs, t’);

}

Fig. 6. Definition of name-fix that guarantees capture-avoidance.

8

1 2

4 3

(a) Graph of source
program.

1 2

4 3

’5

(b) Graph of gener-
ated program t.

1 2

4 3

’5

(c) After renaming
the inner x2.

1 2

4 3

’5

(d) After renaming
the outer x1.

Fig. 7. Name graphs during execution of name-fix for t = λx
1
. (λx

2
. x

3
x

’5
)x

4.

In the following, we present examples that illustrate two design choices of
name-fix that may be somewhat unintuitive: Why are multiple rounds of renam-
ing required, and why do we rename all synthesized variables of the same name.
For the former property, consider the lambda expression t = λx1. (λx2. x3 x’5)x4,
where we use superscripts to annotate variable IDs and ticked IDs for synthesized
variables. The first graph in Figure 7 shows the original binding structure of
the hypothetical source program that t is generated from. The second graph
shows the binding structure of t. The synthesized variable x’5 is captured by the
binding of x2, which is illegal due to notPresrvDef in find-capture. Accordingly,
comp-renaming initiates a renaming of x2, also renaming x3 to preserve the
source reference. This yields expression t′ = λx1. (λα2. α3 x’5)x4 with binding
structure as shown in the third graph. Indeed, x2 no longer captures x’5. How-
ever, now x1 captures x’5. Thus, by renaming x1 and its reference x4, we get
t′′ = λβ1. (λα2. α3 x’5)β4 with capture-free binding structure as shown in the
last graph. The iterative renaming was necessary because the name graph of t
did not indicate that x’5 is eventually captured by x1. We could have preemp-
tively renamed x1 together with x2, but this contradicts our goal for minimal
invasiveness.

To illustrate why name-fix renames all synthesized variables of the same
name, consider the expression t = λx’3. x1(λx2. x’4) in which x’3 captures x’1

and x2 captures x’4. Thus, name-fix needs to rename x’3 and x2. Because x’3

and x’4 are both synthesized and have the same name, renaming of x’3 entails
the renaming of x’4 even though they are unrelated in the name graph of t. Thus,
name-fix yields the correct result t′ = λα’3. x1(λβ2. α’4). To see why x’3 should
bind x’4, consider what happens had the source program consistently used y in
place of x: t2 = λx’3. y1(λ y2. x’4). This program has no variable capture and
is returned unchanged by name-fix . Since we want the result of name-fix to be
invariant under consistent renamings of the source variables, x’3 must bind x’4 in
both t and t2. By renaming all synthesized variables of the same name, name-fix
ensures that no potential variable reference is truncated.

Both of the above examples also illustrate another point: name-fix does not
guarantee valid name binding with respect to the target language. The final

9

result in both examples contains a free variable. Instead, name-fix guarantees
that there is no variable capture. We state and verify the precise properties of
name-fix in the next section.

4 Termination, correctness, and an equivalence theory

Our solution name-fix iteratively eliminates variable capture in a fixed-point
computation. In this section we show three important properties of name-fix :
name-fix terminates, name-fix eliminates variable capture, and name-fix yields
α-equivalent outputs for inputs that are equal up to consistent (but possibly
capturing) variable renaming.

We represent programs as s-expressions with constant symbols c, labeled
variable names xv, and compound terms (t1 . . . tn). We shall frequently require
two programs to be equal up to unconditional renaming:

Definition 2. Two programs are label-equivalent p1 ≡L p2 iff they are equal up
to variable names:

c1 ≡L c2 if c1 = c2
x
v1
1 ≡L x

v2
2 if v1 = v2

(t1 . . . tn) ≡L (t′1 . . . t
′
n) if ti ≡L t

′
i ∀ 1 ≤ i ≤ n

To simplify our formalization, we do not consider bijective relabeling functions
and assume label-equivalence instead. As first metatheoretical result we state
that name-fix terminates.2

Theorem 1. For any name graph Gs and any program t, name-fix (Gs, t) ter-
minates in finitely many steps.

4.1 Assumptions on name resolution

We present our framework for capture-avoiding transformations independent of
any concrete source and target languages. Since our technique works on top of
name graphs, we require functions resolveL that compute the name graph of a
program of some language L by name analysis. However, instead of requiring a
specific form of name analysis, we specify minimal requirements on the behavior
of resolveL that suffice to show our technique is sound. The first assumption states
that name analysis must produce a name graph.

Assumption 1. Given a program p, resolveL(p) yields the name graph G = (V, ρ)
of p according to Definition 1.

The second assumption requires resolveL to behave deterministically. First, given
two programs p1 and p2 that are equal up to variable names, names that are
references in p1 must be references in p2 if the declaration is available (but it
can refer to another declaration). Second, given a reference with two potential
declarations in p1 and p2, resolveLmust deterministically choose one of them.
2 Proofs of all theorems and additional lemmas appear in Appendix A.

10

Assumption 2. Let p1 ≡L p2 be label-equivalent with name graphs resolveL(p1) =

(V, ρ1) and resolveL(p2) = (V, ρ2).

(i) If ρ1(vr) = vd and p@vr2 = p
@vd
2 , then vr ∈ dom(ρ2).

(ii) If ρ1(vr) = vd, ρ2(vr) = v′d, p
@vd
1 = p

@v
′
d

1 , and p@vd2 = p
@v

′
d

2 , then vd = v′d.

In addition to these assumptions, we require that the name graph (V, ρ) of the
original source program satisfies dom(ρ) ∩ codom(ρ) = ∅. We call such graphs
bipartite name graphs. Note that resolveL often does not produce bipartite name
graphs for generated code due to name copying as in Figure 4. We believe our
requirements are modest and readily satisfied by name analyses of most languages.

4.2 name-fix eliminates variable capture

We define the notion of capture-avoiding transformations in terms of the name
graph of the source and target programs, before we show that name-fix can turn
any transformation into a capture-avoiding one.

Definition 3. A transformation f : S → T is capture-avoiding if for all s ∈ S
with resolveS(s) = (Vs, ρs) and t = f(s) with resolveT(t) = (Vt, ρt):

1. Preservation of reference intent: For all v ∈ dom(ρt) with v ∈ Vs,
(i) if v ∈ dom(ρs), then ρs(v) = ρt(v),
(ii) if v 6∈ dom(ρs), then v = ρt(v).

2. Preservation of declaration extent: For all v ∈ dom(ρt), if v 6∈ Vs, then
ρt(v) 6∈ Vs.

The first condition states that a capture-avoiding transformation must preserve
references of the source program. That is, if a variable v occurs in the target
program and this reference was bound in the source program, then the target
program must provide the same binding for v. That is, the transformation must
preserve the reference intent of the source program’s author.

If the source program does not contain v as a bound variable (but maybe as
a declaration), v can only refer to itself in the target program. We specifically
admit such self-references to allow transformations to duplicate names of source-
program declarations in order to introduce additional delegation. For example,
our compiler for state machines illustrated in Figure 1(a) uses names of state
declarations to generate constant functions and references to these functions.
Note that we also admit duplication of reference names, each of which has the
same variable ID and thus must refer to the original declaration.

The second condition states that a capture-avoiding transformation must keep
synthesized variable references separate from variables declared in the source
program. We consider all variables of the source program Vs to be original and
all variables of the target program that do not come from the source program
(Vt \Vs) to be synthesized. This condition prevents synthesized variable references
to be captured by original variable declarations, that is, synthesized variables
can only be bound by synthesized declarations.

11

Function find-capture in Figure 6 implements the test for capture avoidance
and collects witnesses in case of variable capture. Since name-fix only terminates
when find-capture fails to find variable capture, the correctness of name-fix
follows from its termination.

Theorem 2 (Capture avoidance). Given a transformation f : S → T ,
name-fix yields a capture-avoiding transformation λs.name-fix (resolveS(s), f(s)).

4.3 Definitions of α-equivalence and sub-α-equivalence

It is not enough to ensure that name-fix eliminates variable capture, because, for
example, a function that returns the empty program would satisfy this property.
To ensure the usefulness of name-fix , we need to show that, given two programs
that are equal up to possibly capturing renaming, it produces α-equivalent
programs (and not just any programs). Two programs are α-equivalent if they
are equal up to non-capturing renaming, that is, if they have the same syntactic
structure and binding structure.

Definition 4. Two programs p1 and p2 with name graphs resolveL(p1) = (V1, ρ1)

and resolveL(p2) = (V2, ρ2) are α-equivalent p1 ≡α p2 iff p1 ≡L p2 and ρ1 = ρ2.

Note that p1 ≡L p2 entails V1 = V2. As expected, our definition of α-equivalence
is independent of the concrete names that occur in the programs. The following
examples illustrate our definition of α-equivalence.

Program Name graph

p1 = λx1. (λ y3. y4 y5) x2 G1 = ({1, 2, 3, 4, 5}, {(2 7→ 1), (4 7→ 3), (5 7→ 3)})
p2 = λx1. (λx3. x4 x5) x2 G2 = ({1, 2, 3, 4, 5}, {(2 7→ 1), (4 7→ 3), (5 7→ 3)})
p3 = λx1. (λ y3. x4 + y5) x2 G3 = ({1, 2, 3, 4, 5}, {(2 7→ 1), (4 7→ 1), (5 7→ 3)})
p4 = λx1. (λx3. x4 + x5) x2 G4 = ({1, 2, 3, 4, 5}, {(2 7→ 1), (4 7→ 3), (5 7→ 3)})

Our definition correctly identifies p1 ≡α p2, because they are label-equivalent and
have the same name graphs. Indeed, p2 can be derived from p1 by consistently
renaming all occurrences of the bound variable y to x. In contrast, p3 6≡α p4
because the binding structure differs: x4 is bound to x1 in p3, but to x3 in
p4. All other combinations of above programs (modulo symmetry of ≡α) are
not α-equivalent because they fail the required label-equivalence. In particular,
p2 6≡α p4 in spite of having the same binding structure.

To relate programs that are equal up to possibly capturing renaming, we
propose the following notion of sub-α-equivalence.

Definition 5. Two programs are sub-α-equivalent p1 ≡
G
α p2 under a name

graph G = (V, ρ) iff p1 ≡L p2 and, given Vp is the set of labels in p1 and p2,
(i) for all vr, vd ∈ Vp ∩ V with ρ(vr) = vd, p

@vr
1 = p

@vd
1 ⇔ p

@vr
2 = p

@vd
2

(ii) for all vr, vd ∈ Vp \ V, p
@vr
1 = p

@vd
1 ⇔ p

@vr
2 = p

@vd
2

12

Sub-α-equivalence compares two programs based on the actual names occurring
in them, and not based on the binding structure. The relation is parameterized
over a name graph G. The first condition states that for each binding in this
graph, p1 and p2 need to agree on whether reference and declaration share the
same name or not. Even if the reference and declaration have the same name, it
does not imply that there is a corresponding binding in either p1 or p2, because
another declaration can also have this name and capture the reference. The
second condition states that for all variables not in G, p1 and p2 need to agree
on which variable occurrences share names. To illustrate sub-α-equivalence, let
us consider G = ({1, 2, 3}, {(2 7→ 1), (3 7→ 1)}) and the following programs:

[p1]≡Gα
p1 = λx1. (λ y’4. x3 + y’5) x2 p2 = λ z1. (λ y’4. z3 + y’5) z2

p3 = λx1. (λ z’4. x3 + z’5) x2 p4 = λ z1. (λ z’4. z3 + z’5) z2

¬[p1]≡Gα
p5 = λ z1. (λ y’4. x3 + y’5) x2 p6 = λx1. (λ y’4. z3 + y’5) x2

p7 = λx1. (λ z’4. x3 + y’5) x2 p8 = λx1. (λ y’4. x3 + z’5) x2

The first four programs are sub-α-equivalent to p1 under G. We have p1 ≡
G
α p2

because they agree on the name sharing at variable IDs 1, 2, and 3, which is
required because of the bindings in G, and on the name sharing at variable IDs ’4
and ’5, which is required because these IDs are not in G. Similar analysis shows
p1 ≡

G
α p3 and p1 ≡

G
α p4. Programs p5 through p8 are examples that are not sub-

α-equivalent to p1 under G. For p5 and p6 the first condition of sub-α-equivalence
fails because there is no agreement on the name sharing at 1 and 3. For p7 and
p8 the second condition fails because there is no agreement on the name sharing
at ’4 and ’5.

Note that p1 ≡
G
α p4 illustrates that sub-α-equivalence is weaker than α-

equivalence because p1 6≡α p4. In the following subsection we use sub-α-equivalence
to characterize programs that name-fix can repair to α-equivalent programs.

4.4 An equivalence theory for name-fix

We now turn to one of the main results of our metatheory: Function name-fix is
noninvasive, preserves sub-α-equivalence, and is invariant under consistent (but
possibly capturing) renaming of original and synthesized variables, as specified
by sub-α-equivalence.

For capture-free programs, name-fix yields the input program unchanged,
that is, name-fix is noninvasive:

Theorem 3. For any name graph Gs = (Vs, ρs) and any program t with
find-capture(Gs, resolveT(t)) = ∅, name-fix (Gs, t) = t.

Given a bipartite name graph of the source program, name-fix preserves sub-α-
equivalence:

Theorem 4. For any bipartite name graph Gs = (Vs, ρs) and any program t,
name-fix (Gs, t) ≡

Gs
α t.

13

Given a bipartite name graph of the source program, name-fix maps sub-α-
equivalent programs to α-equivalent ones:

Theorem 5. For any bipartite name graph Gs = (Vs, ρs) and programs t1 ≡
Gs
α t2,

name-fix (Gs, t1) ≡α name-fix (Gs, t2).

5 Hygienic transformations

In the previous section, we demonstrated that for any transformation f : S →
T , name-fix provides a capture-avoiding transformation λ s.name-fix (Gs, f(s)).
However, for some transformations name-fix yields a transformation that adheres
to the stronger property of hygienic transformations.

Definition 6. A transformation f : S → T is hygienic if it maps α-equivalent
source programs to α-equivalent target programs:

s1 ≡α s2 =⇒ f(s1) ≡α f(s2).

This definition of hygiene for transformations follows Herman’s definition of
hygiene for syntax macros [10].

Transformations can inspect the names of variables and can generate struc-
turally different code for α-equivalent inputs. For example, a transformation
may decide to produce thread-safe accessors for variables with names prefixed
by sync_. Accordingly, a consistent renaming from sync_foo to foo in the source
program leads to generated programs that are not structurally equivalent, let
alone α-equivalent. However, there is an interesting class of transformations for
which name-fix provides hygiene:

Definition 7. A transformation f : S → T is sub-hygienic if it maps α-equivalent
source programs s1 ≡α s2 to sub-α-equivalent target programs f(s1) ≡

Gs
α f(s2)

under the name graph Gs of s1 (or s2).

The class of sub-hygienic transformations includes some common transformation
schemes. First, it includes transformations that transform a source program
solely based on the program’s structure but independent of the concrete variable
names occurring in it. In such transformations, synthesized variable names are
constant and the same for any source program. Second, for a source language
without name shadowing (such as state machines), sub-hygienic transformations
include those that derive synthesized variable names using an injective function
g : string→ string over the corresponding source variable names. For example, in
Figure 1, we derived the name of a dispatch function by appending -dispatch to
the corresponding state name. In both cases name-fix eliminates all potential
variable capture and yields a fully hygienic transformation:

Theorem 6. For any sub-hygienic transformation f : S → T , transformation
λ s.name-fix (Gs, f(s)) is hygienic.

14

fun zero() = 0;
fun succ(x) = let n = 1 in x + n;
let n = x + 5 in

succ(succ(n + x + zero()))

(a) Program with free variable x.

fun zero() = 0;
fun succ(x) = let n = 1 in (x + n);
let n0 = 2*n + 5 in

succ(succ(n0 + 2*n + zero()))

(b) Result of substituting 2*n for x.

Fig. 8. name-fix yields a capture-avoiding substitution that renames local variables.

6 Case studies

To evaluate the applicability of capture-avoiding program transformation in
practice, we have successfully applied name-fix in three different scenarios:

– Optimization: Function inlining via substitution in a procedural language.
– Desugaring of language extensions: Lambda lifting of local functions.
– Code generation: Compilation of state machines and of Derric, an existing

DSL for digital forensics, to Java.

We have implemented all case-studies in Rascal, a programming language and
environment for source code analysis and transformation [13]. The source code
of our implementation and all case studies are available online: http://github.
com/seba--/hygienic-transformations.

6.1 Preservation of variable IDs with string origins in Rascal

As described in Section 3, a transformation must preserve variable IDs of the
source program when reusing these names in the target program. While it
is possible for a developer of a program transformation to manually preserve
variable IDs via copying, it is easier and safer if the transformation engine does it
automatically. We extended Rascal to preserve variable IDs automatically via a
new Rascal feature called string origins [24]. Every string value (captured by the
str data type) carries information about its origin. A string can either originate
from a parsed text file, from a string literal in a metaprogram, or from a string
computation such as concatenation, slicing, or substitution.

String origins allow us to obtain precise offsets and lengths for known sub-
strings (e.g., names) so that it is possible to replace substrings. We use this
feature to support name-fix for transformations that produce a target program
as a string instead of an abstract syntax tree. Despite the higher fragility of
string-based transformations, they are common in practice. In our case studies,
we use string-based transformations to generate Java code.

6.2 Capture-avoiding substitution and inlining

Substitution and inlining are program transformations that may introduce vari-
able capture. Using name-fix , the definition of capture-avoiding versions of these

15

http://github.com/seba--/hygienic-transformations
http://github.com/seba--/hygienic-transformations

transformations becomes straight-forward because name-fix takes over the re-
sponsibility for avoiding variable capture. Figure 8 illustrates the application
of capture-avoiding substitution to a program of a simple language with global
first-order functions and local let-bound variables. In the example, we use substi-
tution to replace free occurrences of variable x by 2*n. To prevent capture, our
capture-avoiding substitution function renames the locally bound variable n.

Substitution is a program transformation where the source and the target lan-
guage coincide. Capture-avoiding substitution must retain the binding structure
of the original (source) program. Since this requirement is part of our definition of
capture-avoiding transformations, we can use name-fix to get a capture-avoiding
substitution function from a capturing substitution function. This simplifies the
definition of substitution for our procedural language to the following:

subst(p, x, e) = name-fix (resolve(p), substP(p, x, e));
substP(p, x, e) = prog([substF(f, x, e) | f ← p.fdefs], [substE(e2, x, e) | e2 ← p.main]);
substF(fdef(f, params, b), x, e) = fdef(f, params, x in params ? b : substE(b, x, e));

substE(var(y), x, e) = x == y ? e : var(y);
substE(let(y, e1, e2), x, e) = let(y, substE(e1, x, e), x == y ? e2 : substE(e2, x, e));
substE(e1, x, e) = for (Exp e2 ← e1) insert substE(e2, x, e);

Function substP takes a program p and substitutes e for x in all function definitions
and expressions of the main routine using substF and substE, respectively. Function
substF substitutes e for x in the body of a function only if x does not occur as
parameter name of the function, that is, only if x is indeed free in the function
body. Function substE proceeds similarly for let-bound variables. The final case
of substE uses Rascal’s generic-programming features [13] to provide a default
implementation: We substitute e for x in each direct subexpression of e1 and
insert the corresponding result in place of the subexpression.

Function subst ensures capture avoidance, but function substP does not: When
pushing expression e under a binder, the bound variable may occur free in e, in
which case the bound variable should be renamed. By using name-fix , we can
omit checking and potentially renaming the bound variable both for function
definitions and for let expressions and still get a capture-avoiding substitution
function subst that behaves as illustrated in Figure 8.

Inlining of functions is a common program-optimization technique used by
compilers. We illustrate our implementation of capture-avoiding inlining in Fig-
ure 9. The left column shows a simple program using two logical functions or
and and. The central column shows the program after inlining and. Note that our
language uses a single namespace for functions and let-bound variables. We avoid
capture of the reference to or by renaming the local variable or to or0. The right
column shows the result of inlining or in the central program. The local variable
tmp in the definition of or is renamed to tmp0 since otherwise it would capture
the reference to the variable tmp of the main body.

Based on our implementation of substitution, we can easily implement inlining
by calling substE to substitute all arguments of a function call into the body
of the function. Like for substitution, it suffices to call name-fix after function

16

fun or(x, y) =
let tmp = x in
if tmp == 0
then y
else tmp;

fun and(x, y) =
!or(!x, !y);

let or = 1 in
let tmp = 0 in

and(or, tmp)

(a) Original program.

fun or(x, y) = ...;
fun and(x, y) = ...;

let or0 = 1 in
let tmp = 0 in

!or(!or0, !tmp)

(b) First inline function and.

fun or(x, y) = ...;
fun and(x, y) = ...;

let or0 = 1 in
let tmp = 0 in
let tmp0 = !or0 in
if tmp0 == 0
then !tmp
else tmp0

(c) Then inline function or.

Fig. 9. Capture-avoiding function inlining is similar to hygienic macro expansion.

inlining is complete. Intuitively, this is because name-fix only renames bound
variables, which are ignored by substE anyway. A detailed investigation of when
to call name-fix is part of our future work.

6.3 Lambda lifting

Language extensions augment a base language with additional language features.
Many compilers first desugar a source program to a core language. Extensible
languages like SugarJ [8] enable regular programmers to define their own exten-
sions via custom desugaring transformations. Such desugaring transformations
should preserve the binding structure of the source program. In fact, the lack
of capture-avoiding and hygienic transformations in extensible languages was a
major motivation of this work.

Exemplary, to show that name-fix supports language extensions, we imple-
mented an extension of our procedural language for local function definitions
that we desugar by lifting them into the global toplevel function scope [12]. The
left column of Figure 10 shows an example usage of the extension, where we
have a global function f that is shadowed by a local function f, which is used in
another local function g. When lifting the two local functions, we get two toplevel
functions named f, where the originally local f captures a call to the originally
global f in the definition of y. Accordingly, name-fix renames the lifted function f
and its calls, both in the main program and the lifted version of g.

We implement lambda lifting by recursively (i) finding local functions, (ii)
adapting calls to the local function to pass along variables that occur free in
the function body, and (iii) lifting the function definition to the toplevel. To
identify calls of a local function, we use the name graph of the non-lifted program.
A single call to name-fix after desugaring suffices to eliminate potential name
shadowing between functions in the toplevel function scope.

17

fun f(x) = x + 1;
let y = f(10) in
let fun f(x) = f(x + y) in
let fun g(x) = f(y + x + 1) in

f(1) + g(3)

(a) Example with local functions f and g.

fun f(x) = x + 1;
fun f0(x, y) = f0(x + y, y);
fun g(x, y) = f0(y + x + 1, y);
let y = f(10) in

f0(1, y) + g(3, y)

(b) Desugaring of local functions.

Fig. 10. Lambda lifting of local functions f and g requires renaming to avoid capture.

list[FDef] compile(list[State] states) =
map(state2const, states) + map(state2dispatch, states) + mainDispatch(states)

FDef state2const(State s, int i) =
fdef(s.name, [], val(nat(i)));

FDef state2dispatch(State s) =
fdef("<s.name>-dispatch", ["event"], transitions2cond(s.transitions, val(error())));

Exp transitions2cond([t, ∗ts], Exp els) =
cond(equ(var("event"), val(string(t.event)))

, call(t.state, [])
, transitions2cond(ts, els));

FDef mainDispatch(states) =
fdef("main", ["state","event"], mainCond(states, val(error())))

Exp mainCond([s, ∗ss], Exp els) =
cond(equ(var("state"), call(s.name, []))

, call("<s.name>-dispatch", [var("event")])
, mainCond (ss, els));

Fig. 11. Implementation of compiler from state machines to our procedural language.

6.4 State machines

In Section 1, we introduced a language for state machines to illustrate the problem
of inadvertent capture in program transformation. The name-fix algorithm
can be used to repair the result of the transformation without changing the
transformation itself. As a result, developers can structure transformations in
almost arbitrary ways. In the case of the state-machine compiler, a simple naming
convention suffices to link generated references to declarations. In our case study,
the conventions are that state names become constants and state names suffixed
with -dispatch become dispatch functions.

We believe the increased liberty of using naming conventions simplifies the
implementation of program transformations. We illustrate the main part of the
compiler of state machines to our procedural language in Figure 11. In contrast
to approaches based on explicit binders such as HOAS [18] or FreshML [22],
generated references do not have to literally occur below their binders in the
transformation itself. For example, function compile independently generates state

18

state current
close => closed

end

state closed
open => current
lock => token

end

state token
unlock => closed

end

(a) Renamed door state
machine.

public class Door {
final int current = 0, closed = 1, token = 2;
void run(...) {
int current0 = current; String token0 = null;
while ((token0 = input.nextLine()) != null) {
if (current0 == current)
{if (close(token0)) current0 = closed; else continue;}
if (current0 == closed)
{if (open(token0)) current0 = current;
else if (lock(token0)) current0 = token; else continue;}

if (current0 == token)
{if (unlock(token0)) current0 = closed; else continue;}

}}}

(b) Renaming of local variables current and token to preserve
the references of the state machine (exemplarily highlighted).

Fig. 12. Application of name-fix for generated Java code with JDT name resolution.

constants, state dispatch functions, and the main dispatch function (by mainCond),
even though the main dispatch function refers to both generated constants and
state dispatch functions via naming conventions.
Compilation to Java. To exercise capture-avoiding transformation in a more
realistic setting, we also applied name-fix on the result of compiling state machines
to Java. To obtain a name graph for Java, we used Rascal’s M3 source code
model of Java, which provides accurate name and type information extracted
from the Eclipse JDT [11]. The compiler from state machines to Java generates
Java code as structural strings (cf. Section 6.1). It generates a constant for each
state and a single dispatch loop in a run method.

We illustrate the application of the compiler and the use of name-fix on the
generated Java code in Figure 12. The left column shows the state machine from
Figure 1(a) where we consistently renamed states opened and locked to current
and token, respectively. The right column shows the compiled Java program.
Since the dispatch loop in run uses current to store the current state and token to
save the last-read token, the compilation introduces variable capture. Note that
even without using name-fix , the generated code compiles fine but is ill-behaved
because current==current in the first if would always succeed. name-fix repairs
the variable capture by renaming the local variables. This case study shows that
name-fix and our implementation are not limited to simple languages, but are
applicable for generating capture-free programs of languages like Java.

6.5 Digital forensics with Derric

Derric is a domain-specific language for describing (binary) file formats [25].
Such descriptions are used in digital forensic investigations to recover evidence

19

format Bad

sequence S1 S2

structures
S1 { x: 0x0; y: S2.x; }
S2 { x; }

(a) A Derric format.

public class Bad {
private long x;
private boolean S1() {

markStart();
long x0 = ...; ValueSet vs2 = ...;
vs2.addEquals(0);
if (!vs2.equals(x0)) return noMatch();
long y = ...; ValueSet vs5 = ...;
vs5.addEquals(x);
if (!vs5.equals(y)) return noMatch();
addSubSequence("S1");
return true;

}...}

(b) The local variable shadows the field and must be renamed.

Fig. 13. name-fix eliminates variable capture for existing DSL compiler of Derric.

from (possibly damaged) storage devices. Derric descriptions consist of two parts.
The first part describes the high-level structure of a file format by listing sequence
constraints on basic building blocks (called structures) of a file. The second
part describes each structure by declaring fields, their type, and inter-structure
data dependencies. From these descriptions, the Derric compiler generates
high-performance validators in Java that check whether a byte sequence matches
the declared format.

We show a minimalist, artificial Derric format description in the left column
of Figure 13. The format declares two structures (S1 and S2), which must occur
in sequence. S1 contains two fields: x, which must be 0, and y, which should be
equal to field x of S2, which is not further constrained. We show an excerpt of
the code generated by the Derric compiler in the right column of Figure 13.
The main issue is in method S1, which handles format recognition of structure S1.
Field x, which Derric uses to communicate S2’s field x to method S1 is shadowed
by the local variable x which corresponds to S1’s field x. Without going into
too much detail, it is instructive to note that the Java code compiles fine even
without any renaming, but it behaves incorrectly: Instead of checking S1.y = S2.x,
it checks S1.y = S1.x. Such scenario occurs whenever two structures have a field
of the same name and one structure access this field of the other structure in
a constraint. name-fix restores correctness by consistently renaming the local
variable in case of capture.

The Derric case study illustrates the flexibility and power of name-fix .
Derric is a real-world DSL compiling to a mainstream programming language
(Java). The compiler consists of multiple transformations for desugaring and
optimization. The result of these transformations is an intermediate model of a
validator, which is then pretty printed to Java. Nevertheless, we did not have
to modify the Derric compiler in any significant way to be able to repair

20

inadvertent captures, nor was the compiler designed with name-fix in mind. This
is shows that our approach is readily applicable in realistic settings.

7 Discussion

We reflect on the problem statement of this work, explain how name-fix supports
breaking hygiene, and point out open issues and future work.
Problem statement. In section 2.2, we postulated five design goals for name-fix ,
all of which it satisfies. In Section 4, we have verified that name-fix preserves
reference intent (G1) and declaration extent (G2) of the source program. Moreover,
we have established an equivalence theory for name-fix that at least supports
noninvasiveness (G3). In the previous section, we have shown how name-fix can
be applied in a wide range of scenarios using different languages: state machines,
a simple procedural language, Derric, and Java. These results support our claim
that capture elimination with name-fix is language-parametric (G4).

Although the case studies are all implemented in Rascal, any transformation
engine that propagates the unique labels of names is suited for name-fix . Similar
to our encoding, one could easily imagine representing names as tagged strings
Name = (String,Int). A structural representation of strings or compound identifiers
are not necessary. Moreover, we do not require that transformations are written
in any specific style to support capture elimination. In particular, our transfor-
mations make use of sophisticated language features such as intermediate open
terms or generic programming. We conclude that a mechanism like name-fix is
transformation-parametric and realizable in other transformation engines (G5).
Breaking hygiene. Some transformations require that source programs refer to
names synthesized by a transformation. Such breaking of hygiene often occurs
with implicitly declared variables. In other words, intended capture implies
that there is a source reference that is not bound by a declaration in the
source program. Consider, anaphoric conditionals which are like normal if -
expressions but allow reference to the result of the condition using a special
variable it [1]. For instance, in the expression aif c then !it else it, the variable
it implicitly refers to a local variable generated by the desugaring of aif. Ap-
plying name-fix , however, resolves the capture which in this case is intended:
let it0 = c in if it0 then !it else it. To break hygiene in such cases, the transformation
must mark the source occurrences of it when they are carried over to the result:
aif(c, t, e) ⇒ let("it", c, cond(var("it"), mark("it", t), mark("it", e))). In our im-
plementation, mark(s, t) sets a synthesized=true attribute on the ID of any string
s in t. Effectively this means that such names are treated as synthesized names
instead of source names. As a result, name-fix does not rename the binder, and
the result of desugaring the above expression will be let it = c in if it then !it else it.
Future work. Theorem 6 shows that name-fix turns sub-hygienic transformations
into hygienic transformations. However, there is currently no decision procedure
for whether a transformation is sub-hygienic or not. For a Turing-complete
metalanguage, a static analysis can only approximate this property. Nevertheless,

21

a conservative analysis would be useful as it can guarantee that a transformation
is sub-hygienic. For example, all transformations of our case studies except
substitution are sub-hygienic, but we have not formally ensured that. We expect
a type system that checks sub-hygiene to provide guidance to transformation
developers similar to FreshML [22], but without reducing the flexibility.

Another open issue is when to apply name-fix . This is important when build-
ing transformations on top of other transformations or composing transformations
sequentially into transformation pipelines. After every application of a transfor-
mation, there could be inadvertent variable capture that name-fix can eliminate.
For our case studies we used informal reasoning to decide whether the call to
name-fix can be delayed, but more principled guidance would be useful. For
example, a simple class of transformations that commutes with applications
of name-fix is the class of name-insensitive transformations, such as constant
propagation. More generally, care has to be taken whenever a transformation
compares two names for equality, because intermediate variable capture may yield
inaccurate equalities. Since name-fix is the identity on capture-free programs
(Theorem 3), applying name-fix more than necessary is at most inefficient, but
not unsafe.

name-fix renames not only synthesized names but also names that originate
from the source program. This may break the expected interface of the generated
code. Accordingly, name-fix currently is a whole-program transformation that
does not support linking of generated programs against previously generated
libraries, because names in these libraries cannot be changed. Therefore, name-fix
is currently ill-suited for separate compilation. We have experienced this problem
in the Derric compiler, where a Derric field named BIG_ENDIAN will shadow
a constant with the same name that occurs in Derric’s precompiled run-time
system. We leave the investigation of a modular name-fix for future work.

Finally, the current implementation of name-fix requires repeated execution of
the name analysis of the target language. As a result, name-fix can be expensive
in terms of run-time performance. When a compiler is run continuously in an IDE,
this penalty can be an impediment to usability. Fortunately, incremental name
analysis is a well-studied topic (e.g., [19,27]) that is likely to yield benefits for
name-fix because (i) we know the delta induced by name-fix (renamed variables)
and (ii) new variable capture can only occur in references that have changed.

8 Related work

Various approaches to ensuring capture avoidance have been studied in previous
work. Many of them represent a program not as a syntax tree, but use the syntax
tree as a spanning tree for a graph-based program representation with additional
links from variable references to the corresponding variable declarations. The
advantage of graph-based representations is that variable references are unam-
biguously resolved at all times, which can guide developers of transformations.
For example, nameless program representations such as de Bruijn indices [5]
encode the graph structure of variable bindings via numeric values; Oliveira and

22

Löh directly encode recursion and sharing in the abstract syntax of embedded
DSLs [16] via structured graphs. The disadvantage of these techniques is that
they require explicit handling of graphs (updating indices, redirecting edges) and
do not support open terms well.

In higher-order abstract syntax (HOAS) [18] variable references and decla-
rations are encoded using the binding constructs of the metalanguage. Thus,
developers of transformations inherit name analysis and capture-avoiding sub-
stitution from the metalanguage and work with fully name-resolved terms. It is
well-known that HOAS has a number of practical problems [21]. For instance,
the use of metalevel functions to encode binders makes them opaque; it is not
possible to represent open terms or to pattern match against variable binders
inside constructs such as let.

FreshML [22] uses types to describe the binding structure of object-language
variable binders. This enables deconstruction of a variable binder via pattern
matching, which yields a fresh name and the body as an open term in which the
bound variable has been renamed to the fresh one. Due to using fresh variables,
accidental variable capture cannot occur but intentional variable capture is
possible. FreshML is limited by using types for declaring variable scope, because
this is only possible for “declare-before-use” lexical scoping and not, for example,
for the scoping of methods in an object-oriented class.

In model-driven engineering it is common to describe abstract syntax using
class-based metamodels [17]. Syntactic categories correspond to classes, parent-
child relations and cross-references are encoded using associations. Metamodels are
expressive enough to model programs with each name resolved to its declaration
using direct references (pointers). As a result, a large class of model-transformation
formalisms are based on graph rewriting [4]. However, we are unaware of any
work in this area that addresses capture avoidance. Especially, in the case of
model-to-text (M2T) transformations, names have to be output and all guarantees
about capture avoidance (if any) are lost.

Seminal work on hygiene has been performed in the context of syntax
macros [14,3]. Like name-fix , hygienic macro expansion automatically renames
bound variables to avoid variable capture. In related work, a number of approaches
to hygienic macro expansion have been proposed [2,3,7,10]. Closest to our work
is the expansion algorithm proposed by Dybvig, Hieb, and Bruggeman [7] in
that they also associate additional contextual information to identifiers in syntax
objects, similar to our string origins. However, in their work renamings appear
during macro expansion (modulo lazy evaluation), whereas we perform renam-
ings after transformation. Moreover, since for macros the role of an identifier
only becomes apparent after macro expansion, they have to track alternative
interpretations for a single identifier. In contrast, we require name analysis for
the source language, which enables a completely different approach to hygienic
transformations.

Marco [15] is a language-agnostic macro engine that detects variable capture
by parsing error messages produced by an off-the-shelve compiler of the base
language. Marco checks whether any of the free names introduced by a macro is

23

captured at a call-site of the macro. While Marco does not require name analysis,
it has to rely on the quality of error messages of the base compiler, provides no
safety guarantees, and can only detect but not fix variable capture.

Generation environments [23] are metalanguage values that allow the scoping
of variable names generated by a program transformation. A program trans-
formation can open a generation environment to generate code relative to the
encapsulated lexical context. Since generation environments can be passed around
as metalanguage values, different transformations can produce code for a shared
a lexical context. While generation environments simplify the implementation
of transformations, they rely on the discipline of developers and do not provide
static guarantees.

Another area where capture avoidance is important is rename refactorings.
In particular, previous work on rename refactoring for Java [20] omits checking
preconditions and instead tries to fix the result of a renaming through qualified
names so that reference intent is preserved. De Jonge et al. generalize this approach
to support name-binding preservation in refactorings for other languages [6]. In
contrast to our work, rename refactorings are a limited class of transformations
that do not introduce any synthesized names.

9 Conclusion

We presented name-fix , a generic solution for eliminating variable capture from
the result of program transformations by comparing name graphs of the transfor-
mation’s input and output. This work brings benefits of hygienic macros to the
domain of program transformations. In particular, name-fix relieves developers
of transformations from manually ensuring capture avoidance, and it enables
the safe usage of simple naming conventions. We have verified that name-fix
terminates, is correct, and yields α-equivalent programs for inputs that are equal
up to possibly capturing renaming. As we demonstrated with case studies on
program optimization, language extension, and DSL compilation, name-fix is
applicable to a wide range of program transformations and languages.
Acknowledgement. We thank Mitchel Wand, Paolo Giarrusso, Justin Pombrio,
Atze van der Ploeg, and the anonymous reviewers for helpful feedback.

References

1. E. Barzilay, R. Culpepper, and M. Flatt. Keeping it clean with syntax parameters.
In Scheme, 2011.

2. A. Bawden and J. Rees. Syntactic closures. In LFP, pages 86–95. ACM, 1988.
3. W. Clinger and J. Rees. Macros that work. In POPL, pages 155–162. ACM, 1991.
4. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-

proaches. IBM Systems Journal, 45(3):621–645, 2006.
5. N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae, 75(5):381–392, 1972.

24

6. M. de Jonge and E. Visser. A language generic solution for name binding preservation
in refactorings. In LDTA. ACM, 2012.

7. R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic abstraction in scheme. Lisp
and Symbolic Computation, 5(4):295–326, 1992.

8. S. Erdweg. Extensible Languages for Flexible and Principled Domain Abstraction.
PhD thesis, Philipps-Universiät Marburg, 2013.

9. S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R. Cook,
A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P. J. Molina, M. Palatnik,
R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu, E. Visser, K. van der
Vlist, G. Wachsmuth, and J. van der Woning. The state of the art in language
workbenches. In SLE, volume 8225 of LNCS, pages 197–217. Springer, 2013.

10. D. Herman. A Theory of Typed Hygienic Macros. PhD thesis, Northeastern
University, Boston, Massachusetts, 2012.

11. A. Izmaylova, P. Klint, A. Shahi, and J. Vinju. M3: An open model for measuring
source code artifacts. arXiv:1312.1188, 2013. BENEVOL’13.

12. T. Johnsson. Lambda lifting: Transforming programs to recursive equations. In
Proceedings of Functional Programming Languages and Computer Architecture
(FPCA), pages 190–203. Springer, 1985.

13. P. Klint, T. van der Storm, and J. Vinju. Rascal: A domain-specific language for
source code analysis and manipulation. In SCAM, pages 168–177, 2009.

14. E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba. Hygienic macro
expansion. In LFP, pages 151–161. ACM, 1986.

15. B. Lee, R. Grimm, M. Hirzel, and K. S. McKinley. Marco: Safe, expressive macros
for any language. In ECOOP, volume 7313 of LNCS, pages 589–613. Springer,
2012.

16. B. C. d. S. Oliveira and A. Löh. Abstract syntax graphs for domain specific
languages. In PEPM, pages 87–96. ACM, 2013.

17. R. F. Paige, D. S. Kolovos, and F. A. C. Polack. Metamodelling for grammarware
researchers. In SLE, volume 7745 of LNCS, pages 64–82. Springer, 2012.

18. F. Pfenning and C. Elliott. Higher-order abstract syntax. In PLDI, pages 199–208.
ACM, 1988.

19. T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent analysis
for language-based editors. TOPLAS, 5(3):449–477, 1983.

20. M. Schäfer, T. Ekman, and O. de Moor. Sound and extensible renaming for Java.
In OOPSLA, pages 227–294. ACM, 2008.

21. T. Sheard. Accomplishments and research challenges in meta-programming. In
SAIG, pages 2–44. Springer, 2001.

22. M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming with
binders made simple. In ICFP, pages 263–274. ACM, 2003.

23. Y. Smaragdakis and D. S. Batory. Scoping constructs for software generators. In
GCSE, volume 1799 of LNCS, pages 65–78. Springer, 1999.

24. P. I. Valdera, T. van der Storm, and S. Erdweg. Tracing model transformations
with string origins. In ICMT. Springer, 2014. to appear.

25. J. van den Bos and T. van der Storm. Bringing domain-specific languages to digital
forensics. In ICSE, pages 671–680. ACM, 2011.

26. A. van Deursen, P. Klint, and F. Tip. Origin tracking. Symbolic Computation,
15:523–545, 1993.

27. G. Wachsmuth, G. D. P. Konat, V. A. Vergu, D. M. Groenewegen, and E. Visser.
A language independent task engine for incremental name and type analysis. In
SLE, volume 8225 of LNCS, pages 260–280. Springer, 2013.

25

Appendix

A Proofs of theorems from Section 4 and Section 5

Theorem 1. For any name graph Gs and any program t, name-fix (Gs, t) ter-
minates in finitely many steps.

Proof. The depth of the recursion of name-fix is bound by the number of variable
declarations in t. Each variable declaration vd can at most occur once in the
result of find-capture because it is immediately renamed to a fresh name. The
renamed variable declaration cannot occur in find-capture again because (i) if
vd ∈ Vs, then only references vr ∈ Vs with ρ(vr) = vd share the fresh name
and (ii) if vd 6∈ Vs, then only references vr ∈ Vt \ Vs share the fresh name but
vr ∈ dom(find-capture) entails find-capture(vr) ∈ Vs. Hence name-fix terminates
after at most all variable declarations in t have been renamed once. ut

Theorem 2 (Capture avoidance). Given a transformation f : S → T ,
name-fix yields a capture-avoiding transformation λs.name-fix (resolveS(s), f(s)).

Proof. When name-fix terminates, find-capture = ∅ and thus all reference intent
and declaration extent is preserved from the name graph of s to the name graph
of the resulting program. ut

Lemma 1. For any graph G, sub-α-equivalence under G is an equivalence rela-
tion, that is, it is reflexive, symmetric, and transitive.

Proof. Follows directly from the definition of sub-α-equivalence and the fact that
≡L is an equivalence relation. ut

Theorem 3. For any name graph Gs = (Vs, ρs) and any program t with
find-capture(Gs, resolveT(t)) = ∅, name-fix (Gs, t) = t.

Proof. By definition of name-fix . ut

Lemma 2. For any renaming π and program t, rename(t, π) ≡L t.

Proof. By induction on the structure of t ut

Lemma 3. For any name graph Gs = (Vs, ρs) and sub-α-equivalent programs
t1 ≡

Gs
α t2 under name graph Gs, if find-capture(Gs, resolveT(t1)) = ∅ and

find-capture(Gs, resolveT(t2)) = ∅, then t1 ≡α t2.

Proof. Let (Vi, ρi) = resolveT(ti) and capturei = find-capture(Gs, resolveT(ti)).
By definition t1 ≡α t2 if ρ1 = ρ2, which holds if dom(ρ1) = dom(ρ2) and
ρ1(v) = ρ2(v) for all v ∈ dom(ρ1). Let v ∈ dom(ρ1) (analogously for v ∈ dom(ρ2)).
We distinguish 3 cases:

1. If v ∈ Vs and v ∈ dom(ρs), then ρ1(v) = ρs(v) because otherwise ρs(v) 6=
ρ1(v) entails (v 7→ ρ1(v)) ∈ notPresrvRef1 ⊆ capture1, contradicting capture1
= ∅. By Assumption 1, t@v1 = t

@ρ1(v)
1 , which implies t@v2 = t

@ρ1(v)
2 by the

first condition of t1 ≡
Gs
α t2. Thus by Assumption 2-(i), v ∈ dom(ρ2). Then

ρ2(v) = ρs(v) because otherwise (v 7→ ρ2(v)) ∈ notPresrvRef1 ⊆ capture2,
contradicting capture2 = ∅. By Assumption 2-(ii), ρ1(v) = ρ2(v).

2. If v ∈ Vs and v 6∈ dom(ρs), then ρ1(v) = v, because otherwise (v 7→ ρ1(v)) ∈
notPresrvRef2 ⊆ capture1, contradicting capture1 = ∅. We trivially have t@v2 =

t
@ρ1(v)
2 and thus by Assumption 2-(i), v ∈ dom(ρ2). Then ρ2(v) = v, by
because otherwise (v 7→ ρ2(v)) ∈ notPresrvRef2 ⊆ capture2, contradicting
capture2 = ∅. By Assumption 2-(ii), ρ1(v) = v = ρ2(v).

3. If v 6∈ Vs, then ρ1(v) 6∈ Vs because otherwise (v 7→ ρ1(v)) ∈ notPresrvDef ⊆
capture1, contradicting capture1 = ∅. By Assumption 1, t@v1 = t

@ρ1(v)
1 , which

implies t@v2 = t
@ρ1(v)
2 by the second condition of t1 ≡

Gs
α t2. By Assumption 2-

(i), v ∈ dom(ρ2). We have ρ2(v) 6∈ Vs because otherwise (v 7→ ρ2(v)) ∈
notPresrvDef ⊆ capture2, contradicting capture2 = ∅. By Assumption 1, t@v1 =

t
@ρ1(v)
1 and thus ρ1(v) = ρ2(v) by Assumption 2. ut

Lemma 4. For any bipartite name graph Gs = (Vs, ρs) and program t with
capture = find-capture(Gs, resolveT(t)) 6= ∅, renaming preserves sub-α-equivalence
t ≡Gsα rename(t, πsrc ∪ πsyn) given πsrc and πsyn as in name-fix .

Proof. Let (Vt, ρt) = resolveT(t) and t′ = rename(t, πsrc ∪ πsyn). First we have
t ≡L t′ by Lemma 2. By the definition of rename and since dom(πsrc) ∩
dom(πsyn) = ∅, t′@v becomes either πsrc(v) if v ∈ dom(πsrc), πsyn(v) if v ∈
dom(πsyn), and remains unchanged otherwise. We separately show that both
conditions of sub-α-equivalence are satisfied:

1. For all vr, vd ∈ Vt ∩ Vs with ρs(vr) = vd we have vr /∈ dom(πsyn), vd /∈
dom(πsyn), vr ∈ dom(πsrc)⇔ vd ∈ dom(πsrc) because Gs is bipartite, and if
vr ∈ dom(πsrc), then πsrc(vr) = πsrc(vd). Thus, t

@vr = t@vd ⇔ t′@vr = t′@vd .
2. For all vr, vd ∈ Vt \ Vs we have vr 6∈ dom(πsrc) and vd 6∈ dom(πsrc). If t

@vr 6=
t@vd , then t′@vr 6= t′@vd because πsyn maps distinct names to distinct fresh
names. If instead t@vr = t@vd , we have vr ∈ dom(πsyn) ⇔ vd ∈ dom(πsyn)

and if vr ∈ dom(πsyn), then πsyn(vr) = πsyn(vd). Thus, t
@vr = t@vd ⇔

t′@vr = t′@vd . ut

Theorem 4. For any bipartite name graph Gs = (Vs, ρs) and any program t,
name-fix (Gs, t) ≡

Gs
α t.

Proof. By induction on name-fix (Gs, t) using Theorem 3 and Lemma 4. ut

Lemma 5. For any bipartite name graph Gs = (Vs, ρs) and programs t1 ≡
Gs
α t2,

if find-capture(Gs, resolveT(t1)) = ∅, then t1 ≡α name-fix (Gs, t2).

27

Proof. By induction on name-fix (Gs, t2). Base case: find-capture(Gs, resolveT(t2))
= ∅ and name-fix (Gs, t2) = t2. Then t1 ≡α t2 by Lemma 3. Step case:
find-capture(Gs, resolve(t2)) 6= ∅ and name-fix (Gs, t2) = name-fix (Gs, t

′
2). Then

t1 ≡
Gs
α t′2 by Lemma 4, and t1 ≡α name-fix (Gs, t

′
2) by the induction hypothesis.

ut

Theorem 5. For any bipartite name graph Gs = (Vs, ρs) and programs t1 ≡
Gs
α t2,

name-fix (Gs, t1) ≡α name-fix (Gs, t2).

Proof. By induction on name-fix (Gs, t1). Base case by Lemma 5. Step case:
find-capture(Gs, resolve(t1)) 6= ∅ and name-fix (Gs, t1) = name-fix (Gs, t

′
1). Then

t′1 ≡
Gs
α t1 by Lemma 4 and t′1 ≡

Gs
α t2 by transitivity. Thus, name-fix (Gs, t

′
1) ≡

Gs
α

name-fix (Gs, t2) by the induction hypothesis. ut

Theorem 6. For any sub-hygienic transformation f : S → T , transformation
λ s.name-fix (Gs, f(s)) is hygienic.

Proof. For any s1 ≡α s2, f(s1) ≡
Gs
α f(s2) by the definition of sub-hygiene. Then

name-fix (Gs, f(s1)) ≡α name-fix (Gs, f(s2)) by Theorem 5. ut

28

	Capture-Avoiding and Hygienic Program Transformations (incl. Proofs)

