Skip to main content

Cooperative Selection: Improving Tournament Selection via Altruism

  • Conference paper
Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2014)

Abstract

This paper analyzes the dynamics of a new selection scheme based on altruistic cooperation between individuals. The scheme, which we refer to as cooperative selection, extends from tournament selection and imposes a stringent restriction on the mating chances of an individual during its lifespan: winning a tournament entails a depreciation of its fitness value. We show that altruism minimizes the loss of genetic diversity while increasing the selection frequency of the fittest individuals. An additional contribution of this paper is the formulation of a new combinatorial problem for maximizing the similarity of proteins based on their secondary structure. We conduct experiments on this problem in order to validate cooperative selection. The new selection scheme outperforms tournament selection for any setting of the parameters and is the best trade-off, maximizing genetic diversity and minimizing computational efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evolutionary Computation 9(2), 126–142 (2005)

    Article  Google Scholar 

  2. Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T., Warren, G.L.: Crystallography and NMR System: A New Software Suite for Macromolecular Structure Determination. Acta Crystallographica Section D 54(5), 905–921 (1998)

    Article  Google Scholar 

  3. Eiben, A.E., Schut, M.C., De Wilde, A.R.: Boosting genetic algorithms with self-adaptive selection. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1584–1589 (2006)

    Google Scholar 

  4. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)

    Google Scholar 

  5. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. Trans. Evol. Comp. 9(3), 303–317 (2005)

    Article  Google Scholar 

  6. Laredo, J.L.J., Dorronsoro, B., Fernandes, C., Merelo, J.J., Bouvry, P.: Oversized populations and cooperative selection: Dealing with massive resources in parallel infrastructures. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 444–449. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Laredo, J.L.J., Eiben, A.E., van Steen, M., Merelo, J.J.: On the run-time dynamics of a peer-to-peer evolutionary algorithm. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X. LNCS, vol. 5199, pp. 236–245. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Miller, B.L., Goldberg, D.E.: Genetic algorithms, selection schemes, and the varying effects of noise. Evol. Comput. 4(2), 113–131 (1996)

    Article  Google Scholar 

  9. Poli, R.: Tournament selection, iterated coupon-collection problem, and backward-chaining evolutionary algorithms. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 132–155. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Rost, B., Sander, C.: Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19(1), 55–72 (1994)

    Article  Google Scholar 

  11. David Schaffer, J., Eshelman, L.J.: On crossover as an evolutionarily viable strategy. In: Belew, R.K., Booker, L.B. (eds.) ICGA, pp. 61–68. Morgan Kaufmann (1991)

    Google Scholar 

  12. Sokolov, A., Whitley, D.: Unbiased tournament selection. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 1131–1138. ACM, New York (2005)

    Google Scholar 

  13. Xie, H., Zhang, M.: Impacts of sampling strategies in tournament selection for genetic programming. Soft Comput. 16(4), 615–633 (2012)

    Article  Google Scholar 

  14. Xie, H., Zhang, M., Andreae, P.: Another investigation on tournament selection: modelling and visualisation. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1468–1475. ACM, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiménez Laredo, J.L., Nielsen, S.S., Danoy, G., Bouvry, P., Fernandes, C.M. (2014). Cooperative Selection: Improving Tournament Selection via Altruism. In: Blum, C., Ochoa, G. (eds) Evolutionary Computation in Combinatorial Optimisation. EvoCOP 2014. Lecture Notes in Computer Science, vol 8600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44320-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44320-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44319-4

  • Online ISBN: 978-3-662-44320-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics