Skip to main content

The Relationship between Multiplicative Complexity and Nonlinearity

  • Conference paper
Mathematical Foundations of Computer Science 2014 (MFCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8635))

Abstract

We consider the relationship between nonlinearity and multiplicative complexity for Boolean functions with multiple outputs, studying how large a multiplicative complexity is necessary and sufficient to provide a desired nonlinearity. For quadratic circuits, we show that there is a tight connection between error correcting codes and circuits computing functions with high nonlinearity. Using known coding theory results, the lower bound proven here, for quadratic circuits for functions with n inputs and n outputs and high nonlinearity, shows that at least 2.32n AND gates are necessary. We further show that one cannot prove stronger lower bounds by only appealing to the nonlinearity of a function; we show a bilinear circuit computing a function with almost optimal nonlinearity with the number of AND gates being exactly the length of such a shortest code. For general circuits, we exhibit a concrete function with multiplicative complexity at least 2nā€‰āˆ’ā€‰3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyar, J., Find, M., Peralta, R.: Four measures of nonlinearity. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol.Ā 7878, pp. 61ā€“72. Springer, Heidelberg (2013), eprint with correction available at the Cryptology ePrint Archive, Report 2013/633 (2013), http://eprint.iacr.org/

    ChapterĀ  Google ScholarĀ 

  2. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean functions over the basis (\(\land\), āŠ•, 1). Theor. Comput. Sci.Ā 235(1), 43ā€“57 (2000)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  3. Brown, M.R., Dobkin, D.P.: An improved lower bound on polynomial multiplication. IEEE Trans. ComputersĀ 29(5), 337ā€“340 (1980)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  4. Bshouty, N.H., Kaminski, M.: Polynomial multiplication over finite fields: from quadratic to straight-line complexity. Computational ComplexityĀ 15(3), 252ā€“262 (2006)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  5. BĆ¼rgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Grundlehren der mathematischen Wissenschaften, vol.Ā 315. Springer (1997)

    Google ScholarĀ 

  6. Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, ch. 8, pp. 257ā€“397. Cambridge University Press, Cambridge (2010)

    ChapterĀ  Google ScholarĀ 

  7. Carlet, C.: Vectorial Boolean functions for cryptography. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, ch. 9, pp. 398ā€“469. Cambridge Univ. Press, Cambridge (2010)

    ChapterĀ  Google ScholarĀ 

  8. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol.Ā 950, pp. 356ā€“365. Springer, Heidelberg (1995)

    ChapterĀ  Google ScholarĀ 

  9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption Standard. Security and Cryptology. Springer (2002)

    Google ScholarĀ 

  10. Jukna, S.: Extremal Combinatorics: with Applications in Computer Science, 2nd edn. Texts in Theoretical Computer Science. Springer (2011)

    Google ScholarĀ 

  11. Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Springer, Heidelberg (2012)

    BookĀ  Google ScholarĀ 

  12. Kaminski, M., Bshouty, N.H.: Multiplicative complexity of polynomial multiplication over finite fields. J. ACMĀ 36(1), 150ā€“170 (1989)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  13. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L., DamgĆ„rd, I., Goldberg, L.A., HalldĆ³rsson, M.M., IngĆ³lfsdĆ³ttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol.Ā 5126, pp. 486ā€“498. Springer, Heidelberg (2008)

    ChapterĀ  Google ScholarĀ 

  14. Komargodski, I., Raz, R., Tal, A.: Improved average-case lower bounds for demorgan formula size. In: FOCS, pp. 588ā€“597 (2013)

    Google ScholarĀ 

  15. Lempel, A., Seroussi, G., Winograd, S.: On the complexity of multiplication in finite fields. Theor. Comput. Sci.Ā 22, 285ā€“296 (1983)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  16. McEliece, R.J., Rodemich, E.R., Rumsey Jr., H., Welch, L.R.: New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans. Inform. TheoryĀ 23(2), 157ā€“166 (1977)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  17. Mirwald, R., Schnorr, C.P.: The multiplicative complexity of quadratic Boolean forms. Theor. Comput. Sci.Ā 102(2), 307ā€“328 (1992)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  18. Nechiporuk, E.I.: On the complexity of schemes in some bases containing nontrivial elements with zero weights. Problemy KibernetikiĀ 8, 123ā€“160 (1962) (in Russian)

    MATHĀ  Google ScholarĀ 

  19. Schnorr, C.P.: The multiplicative complexity of Boolean functions. In: Mora, T. (ed.) AAECC 1988. LNCS, vol.Ā 357, pp. 45ā€“58. Springer, Heidelberg (1989)

    ChapterĀ  Google ScholarĀ 

  20. Sloane, N., MacWilliams, F.: The Theory of Error Correcting Codes. North-Holland Math. Library 16 (1977)

    Google ScholarĀ 

  21. Strassen, V.: Die berechnungskomplexitƤt von elementarsymmetrischen funktionen und von interpolationskoeffizienten. Numerische MathematikĀ 20(3), 238ā€“251 (1973)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  22. Strassen, V.: Vermeidung von Divisionen. Journal fĆ¼r die reine und angewandte MathematikĀ 264, 184ā€“202 (1973)

    MATHĀ  MathSciNetĀ  Google ScholarĀ 

  23. Vaikuntanathan, V.: Computing blindfolded: New developments in fully homomorphic encryption. In: Ostrovsky, R. (ed.) FOCS, pp. 5ā€“16. IEEE (2011)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boyar, J., Find, M.G. (2014). The Relationship between Multiplicative Complexity and Nonlinearity. In: Csuhaj-VarjĆŗ, E., Dietzfelbinger, M., Ɖsik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44465-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44464-1

  • Online ISBN: 978-3-662-44465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics