Skip to main content

New Results for Non-Preemptive Speed Scaling

  • Conference paper
Mathematical Foundations of Computer Science 2014 (MFCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8635))

Abstract

We consider the speed scaling problem introduced in the seminal paper of Yao et al. [23]. In this problem, a number of jobs, each with its own processing volume, release time, and deadline, needs to be executed on a speed-scalable processor. The power consumption of this processor is P(s) = s α, where s is the processing speed, and α > 1 is a constant. The total energy consumption is power integrated over time, and the objective is to process all jobs while minimizing the energy consumption.

The preemptive version of the problem, along with its many variants, has been extensively studied over the years. However, little is known about the non-preemptive version of the problem, except that it is strongly NP-hard and allows a (large) constant factor approximation [5,7,15]. Up until now, the (general) complexity of this problem is unknown. In the present paper, we study an important special case of the problem, where the job intervals form a laminar family, and present a quasipolynomial-time approximation scheme for it, thereby showing that (at least) this special case is not APX-hard, unless NP ⊆ DTIME(2poly(logn)).

The second contribution of this work is a polynomial-time algorithm for the special case of equal-volume jobs. In addition, we show that two other special cases of this problem allow fully polynomial-time approximation schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with migration: extended abstract. In: SPAA, pp. 279–288. ACM (2011)

    Google Scholar 

  2. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 621–633. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: SPAA, pp. 289–298. ACM (2007)

    Google Scholar 

  4. Angel, E., Bampis, E., Chau, V.: Throughput maximization in the speed-scaling setting, arXiv:1309.1732

    Google Scholar 

  5. Antoniadis, A., Huang, C.-C.: Non-preemptive speed scaling. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 249–260. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Bampis, E., Kononov, A., Letsios, D., Lucarelli, G., Nemparis, I.: From preemptive to non-preemptive speed-scaling scheduling. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 134–146. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Bampis, E., Kononov, A., Letsios, D., Lucarelli, G., Sviridenko, M.: Energy efficient scheduling and routing via randomized rounding. In: FSTTCS. LIPIcs, vol. 24, pp. 449–460. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  8. Bansal, N., Chan, H.-L., Lam, T.-W., Lee, L.-K.: Scheduling for speed bounded processors. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 409–420. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power function. In: SODA, pp. 693–701. SIAM (2009)

    Google Scholar 

  10. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: SODA, pp. 805–813. SIAM (2007)

    Google Scholar 

  11. Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors with migration. In: ISPA, pp. 153–161. IEEE (2008)

    Google Scholar 

  12. Brooks, D., Bose, P., Schuster, S., Jacobson, H.M., Kudva, P., Buyuktosunoglu, A., Wellman, J.D., Zyuban, V.V., Gupta, M., Cook, P.W.: Power-aware microarchitecture: Design and modeling challenges for next-generation microprocessors. IEEE Micro 20(6), 26–44 (2000)

    Article  Google Scholar 

  13. Chan, H.L., Chan, J.W.T., Lam, T.W., Lee, L.K., Mak, K.S., Wong, P.W.H.: Optimizing throughput and energy in online deadline scheduling. ACM Transactions on Algorithms 6(1) (2009)

    Google Scholar 

  14. Chen, J.-J., Kuo, T.-W., Lu, H.-I.: Power-saving scheduling for weakly dynamic voltage scaling devices. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 338–349. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Cohen-Addad, V., Li, Z., Mathieu, C., Mills, I.: Energy-efficient algorithms for non-preemptive speed-scaling, arXiv:1402.4111v2

    Google Scholar 

  16. Han, X., Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Deadline scheduling and power management for speed bounded processors. Theor. Comput. Sci. 411(40-42), 3587–3600 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Irani, S., Shukla, S.K., Gupta, R.K.: Algorithms for power savings. In: SODA, pp. 37–46. ACM/SIAM (2003)

    Google Scholar 

  18. Li, M., Liu, B.J., Yao, F.F.: Min-energy voltage allocation for tree-structured tasks. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 283–296. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage schedules. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 652–663. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Muratore, G., Schwarz, U.M., Woeginger, G.J.: Parallel machine scheduling with nested job assignment restrictions. Oper. Res. Lett. 38(1), 47–50 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Negrean, M., Ernst, R.: Response-time analysis for non-preemptive scheduling in multi-core systems with shared resources. In: SIES, pp. 191–200. IEEE (2012)

    Google Scholar 

  22. Wierman, A., Andrew, L.L.H., Tang, A.: Power-aware speed scaling in processor sharing systems: Optimality and robustness. Perform. Eval. 69(12), 601–622 (2012)

    Article  Google Scholar 

  23. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy. In: FOCS, pp. 374–382. IEEE Computer Society (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, CC., Ott, S. (2014). New Results for Non-Preemptive Speed Scaling. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44465-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44464-1

  • Online ISBN: 978-3-662-44465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics