Skip to main content

Predicting Protein Localization Using a Domain Adaptation Approach

  • Conference paper
  • First Online:
Book cover Biomedical Engineering Systems and Technologies (BIOSTEC 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 452))

Abstract

A challenge arising from the ever-increasing volume of biological data generated by next generation sequencing technologies is the annotation of this data, e.g. identification of gene structure from the location of splice sites, or prediction of protein function/localization. The annotation can be achieved by using automated classification algorithms. Supervised classification requires large amounts of labeled data for the problem at hand. For many problems, labeled data is not available. However, labeled data might be available for a similar, related problem. To leverage the labeled data available for the related problem, we propose an algorithm that builds a naïve Bayes classifier for biological sequences in a domain adaptation setting. Specifically, it uses the existing large corpus of labeled data from a source organism, in conjunction with any available labeled data and lots of unlabeled data from a target organism, thus alleviating the need to manually label a large number of sequences for a supervised classifier. When tested on the task of predicting protein localization from the composition of the protein, this algorithm performed better than the multinomial naïve Bayes classifier. However, on a more difficult task, of splice site prediction, the results were not satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Downloaded from http://www.psort.org/dataset/datasetv2.html

  2. 2.

    Downloaded from http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.php

  3. 3.

    Downloaded from ftp://ftp.tuebingen.mpg.de/fml/cwidmer/

References

  1. Baten, A., Chang, B., Halgamuge, S., Li, J.: Splice site identification using probabilistic parameters and SVM classification. BMC Bioinform. 7(Suppl. 5), S15 (2006)

    Article  Google Scholar 

  2. Bernal, A., Crammer, K., Hatzigeorgiou, A., Pereira, F.: Global discriminative learning for higher-accuracy computational gene prediction. PLoS Comput. Biol. 3(3), e54 (2007)

    Article  MathSciNet  Google Scholar 

  3. Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C., Furey, T.S., Ares Jr., M., Haussler, D.: Knowledge-based analysis of microarray gene expression data using support vector machines. PNAS 97(1), 262–267 (2000)

    Article  Google Scholar 

  4. Dai, W., Xue, G., Yang, Q., Yu, Y.: Transferring naïve bayes classifiers for text classification. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (2007)

    Google Scholar 

  5. Degroeve, S., Saeys, Y., De Baets, B., Rouzé, P., Van De Peer, Y.: Splicemachine: predicting splice sites from high-dimensional local context representations. Bioinformatics 21(8), 1332–1338 (2005)

    Article  Google Scholar 

  6. Eaton, J.W., Bateman, D., Hauberg, S.: GNU Octave Manual Version 3. Network Theory Ltd., Bristol (2008)

    Google Scholar 

  7. Emanuelsson, O., Nielsen, H., Brunak, S., von Heijne, G.: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300(4), 1005–1016 (2000)

    Article  Google Scholar 

  8. Gardy, J.L., Laird, M.R., Chen, F., Rey, S., Walsh, C.J., Ester, M., Brinkman, F.S.L.: Psortb v. 2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21(5), 617–623 (2005)

    Article  Google Scholar 

  9. Gardy, J.L., Spencer, C., Wang, K., Ester, M., Tusnády, G.E., Simon, I., Hua, S., deFays, K., Lambert, C., Nakai, K., Brinkman, F.S.: Psort-b: improving protein subcellular localization prediction for gram-negative bacteria. Nucleic Acids Res. 31(13), 3613–3617 (2003)

    Article  Google Scholar 

  10. Huang, J., Li, T., Chen, K., Wu, J.: An approach of encoding for prediction of splice sites using svm. Biochimie 88, 923–929 (2006)

    Article  Google Scholar 

  11. Jaakkola, T.S., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II, pp. 487–493. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Jiang, J., Zhai, C.: A two-stage approach to domain adaptation for statistical classifiers. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, CIKM ’07, pp. 401–410. ACM, New York (2007)

    Google Scholar 

  13. Lorena, A.C., de Carvalho, A.C.P.L.F.: Human splice site identification with multiclass support vector machines and bagging. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN/ICONIP 2003. LNCS, vol. 2714, pp. 234–241. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Maeireizo, B., Litman, D., Hwa, R.: Co-training for predicting emotions with spoken dialogue data. In: Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions, ACLdemo ’04. Association for Computational Linguistics, Stroudsburg (2004)

    Google Scholar 

  15. Mccallum, A., Nigam, K.: A comparison of event models for naive bayes text classification. In: AAAI-98 Workshop on ‘Learning for Text Categorization’ (1998)

    Google Scholar 

  16. Müller, K.-R., Mika, S., Rätsch, G., Tsuda, S., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Networks 12(2), 181–202 (2001)

    Article  Google Scholar 

  17. Nigam, K., Mccallum, A., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39(2–3), 103–134 (1999)

    Google Scholar 

  18. Noble, W.S.: What is a support vector machine? Nat Biotechnol. 24(12), 1565–1567 (2006)

    Article  MathSciNet  Google Scholar 

  19. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  20. Rätsch, G., Sonnenburg, S.: Accurate splice site detection for caenorhabditis elegans. In: Schölkopf, B., Tsuda, K., Vert, J.-P. (eds.) Kernel Methods in Computational Biology, pp. 277–298. MIT Press, Cambridge (2004)

    Google Scholar 

  21. Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K.-R., Sommer, R., Schölkopf, B.: Improving the c. elegans genome annotation using machine learning. PLoS Comput. Biol. 3, e20 (2007)

    Article  Google Scholar 

  22. Riloff, E., Wiebe, J., Wilson, T.: Learning subjective nouns using extraction pattern bootstrapping. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, CONLL ’03, vol. 4, pp. 25–32. Association for Computational Linguistics, Stroudsburg (2003)

    Google Scholar 

  23. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  24. Schweikert, G., Widmer, C., Schölkopf, B., Rätsch, G.: An empirical analysis of domain adaptation algorithms for genomic sequence analysis. In: NIPS’08, pp. 1433–1440 (2008)

    Google Scholar 

  25. Sonnenburg, S., Rätsch, G., Jagota, A., Müller, K.-R.: New methods for splice site recognition. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 329–336. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.: Accurate splice site prediction using support vector machines. BMC Bioinf. 8(Suppl. 10), 1–16 (2007)

    Google Scholar 

  27. Tan, S., Cheng, X., Wang, Y., Xu, H.: Adapting Naive Bayes to domain adaptation for sentiment analysis. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 337–349. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.-R.: A new discriminative kernel from probabilistic models. Neural Comput. 14(10), 2397–2414 (2002)

    Article  MATH  Google Scholar 

  29. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New York Inc., New York (1995)

    Book  MATH  Google Scholar 

  30. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, ACL ’95, pp. 189–196. Association for Computational Linguistics, Stroudsburg (1995)

    Google Scholar 

  31. Zhang, Y., Chu, C.-H., Chen, Y., Zha, H., Ji, X.: Splice site prediction using support vector machines with a bayes kernel. Expert Syst. Appl. 30(1), 73–81 (2006)

    Article  Google Scholar 

  32. Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.-R.: Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16(9), 799–807 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The computing for this project was performed on the Beocat Research Cluster at Kansas State University, which is funded in part by NSF grants CNS-1006860, EPS-1006860, EPS-0919443, and MRI-1126709.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nic Herndon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herndon, N., Caragea, D. (2014). Predicting Protein Localization Using a Domain Adaptation Approach. In: Fernández-Chimeno, M., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2013. Communications in Computer and Information Science, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44485-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44485-6_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44484-9

  • Online ISBN: 978-3-662-44485-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics