Abstract
In this article, we consider deterministic automata under the paradigm of average case analysis of algorithms. We present the main results obtained in the literature using this point of view, from the very beginning with Korshunov’s theorem about the asymptotic number of accessible automata to the most recent advances, such as the average running time of Moore’s state minimization algorithm or the estimation of the probability that an automaton is minimal. While focusing on results, we also try to give an idea of the main tools used in this field.
This work is supported by the French National Agency (ANR) through ANR-10-LABX-58 and through ANR-2010-BLAN-0204.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Almeida, A., Almeida, M., Alves, J., Moreira, N., Reis, R.: Fado and guitar. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 65–74. Springer, Heidelberg (2009)
Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string automata representation. Theor. Comput. Sci. 387(2), 93–102 (2007)
Bassino, F., David, J., Nicaud, C.: REGAL: A library to randomly and exhaustively generate automata. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 303–305. Springer, Heidelberg (2007)
Bassino, F., David, J., Nicaud, C.: On the average complexity of Moore’s state minimization algorithm. In: Albers, S., Marion, J.-Y. (eds.) STACS 2009. LIPIcs, vol. 3, pp. 123–134. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)
Bassino, F., David, J., Nicaud, C.: Average case analysis of Moore’s state minimization algorithm. Algorithmica 63(1-2), 509–531 (2012)
Bassino, F., David, J., Sportiello, A.: Asymptotic enumeration of minimal automata. In: Dürr, C., Wilke, T. (eds.) STACS 2012. LIPIcs, vol. 14, pp. 88–99. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)
Bassino, F., Nicaud, C.: Enumeration and random generation of accessible automata. Theor. Comput. Sci. 381(1-3), 86–104 (2007)
Bassino, F., Sportiello, A.: Linear-time generation of specifiable combinatorial structures: General theory and first examples. arXiv, abs/1307.1728 (2013)
Berend, D., Kontorovich, A.: The state complexity of random DFAs. arXiv, abs/1307.0720 (2013)
Berlinkov, M.V.: On the probability to be synchronizable. arXiv, abs/1304.5774 (2013)
Bollobás, B.: Random Graphs. Cambridge University Press (2001)
Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events. In: Mathematical Theory of Automata. MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, Polyt. Instit. of Brooklyn, N.Y. (1962)
Carayol, A., Nicaud, C.: Distribution of the number of accessible states in a random deterministic automaton. In: Dürr, C., Wilke, T. (eds.) STACS 2012. LIPIcs, vol. 14, pp. 194–205. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)
Černý, J.: Poznámka k. homogénnym experimentom s konecnymi automatmi. Matematicko-fyzikalny Časopis Slovensk, 14 (1964)
Champarnaud, J.-M., Khorsi, A., Paranthoën, T.: Split and join for minimizing: Brzozowski’s algorithm. In: Balík, M., Simánek, M. (eds.) Stringology 2002, pp. 96–104 (2002)
Champarnaud, J.-M., Paranthoën, T.: Random generation of DFAs. Theor. Comput. Sci. 330(2), 221–235 (2005)
Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press (1994)
David, J.: Average complexity of Moore’s and Hopcroft’s algorithms. Theor. Comput. Sci. 417, 50–65 (2012)
De Felice, S., Nicaud, C.: Brzozowski algorithm is generically super-polynomial for deterministic automata. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 179–190. Springer, Heidelberg (2013)
De Felice, S., Nicaud, C.: On the average complexity of Brzozowski’s algorithm for deterministic automata with a small number of final states. In: DLT 2014 (to appear in LNCS, 2014)
Denise, A., Zimmermann, P.: Uniform random generation of decomposable structures using floating-point arithmetic. Theor. Comput. Sci. 218(2), 233–248 (1999)
Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the random generation of combinatorial structures. Comb. Prob. Comp. 13(4-5), 577–625 (2004)
Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1. Wiley (1968)
Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer, Heidelberg (1990)
Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press (2009)
Flajolet, P., Zimmermann, P., Van Cutsem, B.: A calculus for the random generation of labelled combinatorial structures. Theor. Comput. Sci. 132(2), 1–35 (1994)
Good, I.J.: An asymptotic formula for the differences of the powers at zero. Ann. Math. Statist. 32, 249–256 (1961)
Harrison, M.: A census of finite automata. Canadian J. Math. 17, 100–113 (1965)
Hopcroft, J.E.: An n logn algorithm for minimizing the states in a finite automaton. In: Kohavi, Z. (ed.) The Theory of Machines and Computations, pp. 189–196. Academic Press (1971)
Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Co., Reading (1979)
Karp, R.M.: The transitive closure of a random digraph. Random Struct. Algorithms 1(1), 73–94 (1990)
Kisielewicz, A., Kowalski, J., Szykuła, M.: A fast algorithm finding the shortest reset words. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 182–196. Springer, Heidelberg (2013)
Knuth, D.E.: The Art of Computer Programming, Volume I: Fundamental Algorithms, 3rd edn. Addison-Wesley (1997)
Kolčin, V.: Random Mappings: Translation Series in Mathematics and Engineering. Translations series in mathematics and engineering. Springer London, Limited (1986)
Korshunov, A.: Enumeration of finite automata. Problemy Kibernetiki 34, 5–82 (1978) (in Russian)
Lebensztayn, E.: On the asymptotic enumeration of accessible automata. DMTCS 12(3) (2010)
Liskovets, V.A.: The number of initially connected automata. Cybernetics 4, 259–262 (1969); English translation of Kibernetika (3), 16-19 (1969)
Lombardy, S., Régis-Gianas, Y., Sakarovitch, J.: Introducing VAUCANSON. Theor. Comput. Sci. 328(1-2), 77–96 (2004)
Moore, E.F.: Gedanken experiments on sequential machines. In: Automata Studies, pp. 129–153. Princeton U. (1956)
Nicaud, C.: Average state complexity of operations on unary automata. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 231–240. Springer, Heidelberg (1999)
Nicaud, C.: Comportement en moyenne des automates finis et des langages rationnels. PhD Thesis, Université Paris VII (2000) (in French)
Nicaud, C.: Fast synchronization of random automata. arXiv, abs/1404.6962 (2014)
Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms. Academic Press (1978)
Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata constructions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 396–411. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag GmbH Berlin Heidelberg
About this paper
Cite this paper
Nicaud, C. (2014). Random Deterministic Automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44522-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-662-44522-8_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44521-1
Online ISBN: 978-3-662-44522-8
eBook Packages: Computer ScienceComputer Science (R0)