Skip to main content

Monadic Second-Order Logic with Arbitrary Monadic Predicates

  • Conference paper
Mathematical Foundations of Computer Science 2014 (MFCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8634))

  • 705 Accesses

Abstract

We study Monadic Second-Order Logic (MSO) over finite words, extended with (non-uniform arbitrary) monadic predicates. We show that it defines a class of languages that has algebraic, automata-theoretic and machine-independent characterizations. We consider the regularity question: given a language in this class, when is it regular? To answer this, we show a substitution property and the existence of a syntactical predicate.

We give three applications. The first two are to give simple proofs of the Straubing and Crane Beach Conjectures for monadic predicates, and the third is to show that it is decidable whether a language defined by an MSO formula with morphic predicates is regular.

The authors are supported by the project ANR 2010 BLAN 0202 02 (FREC). The first author is supported by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 259454 (GALE) and 239850 (SOSNA). The second author is supported by Fondation CFM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC 1. Journal of Computer and System Sciences 38(1), 150–164 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barrington, D.A.M., Compton, K., Straubing, H., ThĆ©rien, D.: Regular languages in NC1. Journal of Computer and System Sciences 44(3), 478–499 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barrington, D.A.M., Immerman, N., Lautemann, C., Schweikardt, N., ThĆ©rien, D.: First-order expressibility of languages with neutral letters or: The Crane Beach conjecture. Journal of Computer and System Sciences 70(2), 101–127 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barrington, D.A.M., ThĆ©rien, D.: Finite monoids and the fine structure of NC1. Journal of the Association for Computing Machinery 35(4), 941–952 (1988)

    Article  MathSciNet  Google Scholar 

  5. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Proceedings of the 1st International Congress of Logic, Methodology, and Philosophy of Science, CLMPS 1960, pp. 1–11. Stanford University Press (1962)

    Google Scholar 

  6. Carton, O., Thomas, W.: The monadic theory of morphic infinite words and generalizations. Information and Computation 176(1), 51–65 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dekking, F.M.: Iteration of maps by an automaton. Discrete Mathematics 126(1-3), 81–86 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Durand, F.: Decidability of the HD0L ultimate periodicity problem. RAIRO Theor. Inform. Appl. 47(2), 201–214 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second (first) order theory of (generalized) successor. Journal of Symbolic Logic 31(2), 169–181 (1966)

    Article  MATH  Google Scholar 

  10. Immerman, N.: Languages that capture complexity classes. SIAM Journal of Computing 16(4), 760–778 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Koucký, M., Lautemann, C., Poloczek, S., ThĆ©rien, D.: Circuit Lower Bounds via Ehrenfeucht-FraissĆ© Games. In: IEEE Conference on Computational Complexity, pp. 190–201 (2006)

    Google Scholar 

  12. Kruckman, A., Rubin, S., Sheridan, J., Zax, B.: A myhill-nerode theorem for automata with advice. In: Faella, M., Murano, A. (eds.) GandALF. EPTCS, vol. 96, pp. 238–246 (2012)

    Google Scholar 

  13. Nies, A.: Describing groups. Bulletin of Symbolic Logic 13, 305–339, 9 (2007)

    Google Scholar 

  14. PĆ©ladeau, P.: Logically defined subsets of ā„•k. Theoretical Computer Science 93(2), 169–183 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rabinovich, A.: On decidability of monadic logic of order over the naturals extended by monadic predicates. Information and Computation 205(6), 870–889 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rabinovich, A.: The Church problem for expansions of (ā„•, <) by unary predicates. Information and Computation 218, 1–16 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rabinovich, A., Thomas, W.: Decidable theories of the ordering of natural numbers with unary predicates. In: Ɖsik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 562–574. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Schweikardt, N.: On the Expressive Power of First-Order Logic with Built-In Predicates. PhD thesis, Gutenberg-UniverstƤt in Mainz (2001)

    Google Scholar 

  19. Semenov, A.L.: Decidability of monadic theories. In: Chytil, M., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 162–175. Springer, Heidelberg (1984)

    Google Scholar 

  20. Straubing, H.: Finite automata, formal logic, and circuit complexity. BirkhƤuser Boston Inc., Boston (1994)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Fijalkow, N., Paperman, C. (2014). Monadic Second-Order Logic with Arbitrary Monadic Predicates. In: Csuhaj-VarjĆŗ, E., Dietzfelbinger, M., Ɖsik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44522-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44522-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44521-1

  • Online ISBN: 978-3-662-44522-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics