Abstract
We study Monadic Second-Order Logic (MSO) over finite words, extended with (non-uniform arbitrary) monadic predicates. We show that it defines a class of languages that has algebraic, automata-theoretic and machine-independent characterizations. We consider the regularity question: given a language in this class, when is it regular? To answer this, we show a substitution property and the existence of a syntactical predicate.
We give three applications. The first two are to give simple proofs of the Straubing and Crane Beach Conjectures for monadic predicates, and the third is to show that it is decidable whether a language defined by an MSO formula with morphic predicates is regular.
The authors are supported by the project ANR 2010 BLAN 0202 02 (FREC). The first author is supported by the European Unionās Seventh Framework Programme (FP7/2007-2013) under grant agreement 259454 (GALE) and 239850 (SOSNA). The second author is supported by Fondation CFM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC 1. Journal of Computer and System Sciences 38(1), 150ā164 (1989)
Barrington, D.A.M., Compton, K., Straubing, H., ThĆ©rien, D.: Regular languages in NC1. Journal of Computer and System Sciences 44(3), 478ā499 (1992)
Barrington, D.A.M., Immerman, N., Lautemann, C., Schweikardt, N., ThĆ©rien, D.: First-order expressibility of languages with neutral letters or: The Crane Beach conjecture. Journal of Computer and System Sciences 70(2), 101ā127 (2005)
Barrington, D.A.M., ThĆ©rien, D.: Finite monoids and the fine structure of NC1. Journal of the Association for Computing Machinery 35(4), 941ā952 (1988)
Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Proceedings of the 1st International Congress of Logic, Methodology, and Philosophy of Science, CLMPS 1960, pp. 1ā11. Stanford University Press (1962)
Carton, O., Thomas, W.: The monadic theory of morphic infinite words and generalizations. Information and Computation 176(1), 51ā65 (2002)
Dekking, F.M.: Iteration of maps by an automaton. Discrete Mathematics 126(1-3), 81ā86 (1994)
Durand, F.: Decidability of the HD0L ultimate periodicity problem. RAIRO Theor. Inform. Appl. 47(2), 201ā214 (2013)
Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second (first) order theory of (generalized) successor. Journal of Symbolic Logic 31(2), 169ā181 (1966)
Immerman, N.: Languages that capture complexity classes. SIAM Journal of Computing 16(4), 760ā778 (1987)
Koucký, M., Lautemann, C., Poloczek, S., ThĆ©rien, D.: Circuit Lower Bounds via Ehrenfeucht-FraissĆ© Games. In: IEEE Conference on Computational Complexity, pp. 190ā201 (2006)
Kruckman, A., Rubin, S., Sheridan, J., Zax, B.: A myhill-nerode theorem for automata with advice. In: Faella, M., Murano, A. (eds.) GandALF. EPTCS, vol. 96, pp. 238ā246 (2012)
Nies, A.: Describing groups. Bulletin of Symbolic Logic 13, 305ā339, 9 (2007)
PĆ©ladeau, P.: Logically defined subsets of āk. Theoretical Computer Science 93(2), 169ā183 (1992)
Rabinovich, A.: On decidability of monadic logic of order over the naturals extended by monadic predicates. Information and Computation 205(6), 870ā889 (2007)
Rabinovich, A.: The Church problem for expansions of (ā, <) by unary predicates. Information and Computation 218, 1ā16 (2012)
Rabinovich, A., Thomas, W.: Decidable theories of the ordering of natural numbers with unary predicates. In: Ćsik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 562ā574. Springer, Heidelberg (2006)
Schweikardt, N.: On the Expressive Power of First-Order Logic with Built-In Predicates. PhD thesis, Gutenberg-UniverstƤt in Mainz (2001)
Semenov, A.L.: Decidability of monadic theories. In: Chytil, M., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 162ā175. Springer, Heidelberg (1984)
Straubing, H.: Finite automata, formal logic, and circuit complexity. BirkhƤuser Boston Inc., Boston (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2014 Springer-Verlag GmbH Berlin Heidelberg
About this paper
Cite this paper
Fijalkow, N., Paperman, C. (2014). Monadic Second-Order Logic with Arbitrary Monadic Predicates. In: Csuhaj-VarjĆŗ, E., Dietzfelbinger, M., Ćsik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44522-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-662-44522-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44521-1
Online ISBN: 978-3-662-44522-8
eBook Packages: Computer ScienceComputer Science (R0)