Abstract
It is proved that a two-way alternating finite automaton (2AFA) with n states can be transformed to an equivalent one-way nondeterministic finite automaton (1NFA) with f(n) = 2Θ(n logn) states, and that this number of states is necessary in the worst case already for the transformation of a two-way automaton with universal nondeterminism (2Π1FA) to a 1NFA. At the same time, an n-state 2AFA is transformed to a 1NFA with (2n − 1)2 + 1 states recognizing the complement of the original language, and this number of states is again necessary in the worst case. The difference between these two trade-offs is used to show that complementing a 2AFA requires at least Ω(n logn) states.
This work is the result of the project implementation: Research and Education at UPJŠ—Heading towards Excellent European Universities, ITMS project code: 26110230056, supported by the Operational Program Education funded by the European Social Fund (ESF).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Birget, J.-C.: Partial orders on words, minimal elements of regular languages, and state complexity. Theoretical Computer Science 119, 267–291 (1993)
Birget, J.-C.: State-complexity of finite-state devices, state compressibility and incompressibility. Mathematical Systems Theory 26(3), 237–269 (1993)
Geffert, V.: An alternating hierarchy for finite automata. Theoretical Computer Science 445, 1–24 (2012)
Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theoretical Computer Science 295(1-3), 189–203 (2003)
Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Information and Computation 205(8), 1173–1187 (2007)
Kapoutsis, C.A.: Removing bidirectionality from nondeterministic finite automata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555. Springer, Heidelberg (2005)
Kapoutsis, C.A.: Two-way automata versus logarithmic space. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 359–372. Springer, Heidelberg (2011)
Kunc, M., Okhotin, A.: Reversibility of computations in graph-walking automata. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 595–606. Springer, Heidelberg (2013)
Ladner, R., Lipton, R., Stockmeyer, L.: Alternating pushdown and stack automata. SIAM Journal on Computing 13(1), 135–155 (1984)
Vardi, M.: A note on the reduction of two-way automata to one-way automata. Information Processing Letters 30(5), 261–264 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag GmbH Berlin Heidelberg
About this paper
Cite this paper
Geffert, V., Okhotin, A. (2014). Transforming Two-Way Alternating Finite Automata to One-Way Nondeterministic Automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44522-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-662-44522-8_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44521-1
Online ISBN: 978-3-662-44522-8
eBook Packages: Computer ScienceComputer Science (R0)