Abstract
The classification of the fragments of Halpern and Shoham’s logic with respect to decidability/undecidability of the satisfiability problem is now very close to the end. We settle one of the few remaining questions concerning the fragment \(\mathsf{A\bar{A}B\bar{B}}\), which comprises Allen’s interval relations “meets” and “begins” and their symmetric versions. We already proved that \(\mathsf{A\bar{A}B\bar{B}}\) is decidable over the class of all finite linear orders and undecidable over ordered domains isomorphic to ℕ. In this paper, we first show that \(\mathsf{A\bar{A}B\bar{B}}\) is undecidable over ℝ and over the class of all Dedekind-complete linear orders. We then prove that the logic is decidable over ℚ and over the class of all linear orders.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The dark side of Interval Temporal Logic: sharpening the undecidability border. In: Proc. of the 18th TIME, pp. 131–138. IEEE (2011)
Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableaux for logics of subinterval structures over dense orderings. Journal of Logic and Computation 20(1), 133–166 (2010)
Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions. Annals of Pure and Applied Logic 161(3), 289–304 (2009)
Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: What’s decidable about Halpern and Shoham’s interval logic? The maximal fragment \(\mathsf{AB \overline{BL}}\). In: Proc. of the 26th LICS, pp. 387–396. IEEE (2011)
Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of the ACM 38(4), 935–962 (1991)
Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Model-theoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory. Studies in Linguistics and Philosophy, vol. 42. Springer (1993)
Lodaya, K.: Sharpening the undecidability of interval temporal logic. In: Kleinberg, R.D., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 290–298. Springer, Heidelberg (2000)
Marcinkowski, J., Michaliszyn, J.: The ultimate undecidability result for the Halpern-Shoham logic. In: Proc. of the 26th LICS, pp. 377–386. IEEE (2011)
Mayr, R.: Undecidable problems in unreliable computations. Theoretical Computer Science 297(1-3), 337–354 (2003)
Montanari, A., Puppis, G., Sala, P.: A decidable spatial logic with cone-shaped cardinal directions. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 394–408. Springer, Heidelberg (2009)
Montanari, A., Puppis, G., Sala, P.: Maximal decidable fragments of halpern and shoham’s modal logic of intervals. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 345–356. Springer, Heidelberg (2010)
Montanari, A., Puppis, G., Sala, P.: Decidability of the interval temporal logic \({A}\bar{A}{B}\bar{B}\) over the rationals. Tech. Rep. RR01/2014, Univ. of Udine (2014)
Schnoebelen, P.: Lossy counter machines decidability cheat sheet. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 51–75. Springer, Heidelberg (2010)
Venema, Y.: Two-dimensional modal logics for relation algebras and temporal logic of intervals. ITLI prepublication series LP-89-03, Univ. of Amsterdam (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag GmbH Berlin Heidelberg
About this paper
Cite this paper
Montanari, A., Puppis, G., Sala, P. (2014). Decidability of the Interval Temporal Logic \(\mathsf{A\bar{A}B\bar{B}}\) over the Rationals. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44522-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-662-44522-8_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44521-1
Online ISBN: 978-3-662-44522-8
eBook Packages: Computer ScienceComputer Science (R0)