Skip to main content

Decidability of the Interval Temporal Logic \(\mathsf{A\bar{A}B\bar{B}}\) over the Rationals

  • Conference paper
Mathematical Foundations of Computer Science 2014 (MFCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8634))

Abstract

The classification of the fragments of Halpern and Shoham’s logic with respect to decidability/undecidability of the satisfiability problem is now very close to the end. We settle one of the few remaining questions concerning the fragment \(\mathsf{A\bar{A}B\bar{B}}\), which comprises Allen’s interval relations “meets” and “begins” and their symmetric versions. We already proved that \(\mathsf{A\bar{A}B\bar{B}}\) is decidable over the class of all finite linear orders and undecidable over ordered domains isomorphic to ℕ. In this paper, we first show that \(\mathsf{A\bar{A}B\bar{B}}\) is undecidable over ℝ and over the class of all Dedekind-complete linear orders. We then prove that the logic is decidable over ℚ and over the class of all linear orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The dark side of Interval Temporal Logic: sharpening the undecidability border. In: Proc. of the 18th TIME, pp. 131–138. IEEE (2011)

    Google Scholar 

  2. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableaux for logics of subinterval structures over dense orderings. Journal of Logic and Computation 20(1), 133–166 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions. Annals of Pure and Applied Logic 161(3), 289–304 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: What’s decidable about Halpern and Shoham’s interval logic? The maximal fragment \(\mathsf{AB \overline{BL}}\). In: Proc. of the 26th LICS, pp. 387–396. IEEE (2011)

    Google Scholar 

  5. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of the ACM 38(4), 935–962 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Model-theoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory. Studies in Linguistics and Philosophy, vol. 42. Springer (1993)

    Google Scholar 

  7. Lodaya, K.: Sharpening the undecidability of interval temporal logic. In: Kleinberg, R.D., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 290–298. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Marcinkowski, J., Michaliszyn, J.: The ultimate undecidability result for the Halpern-Shoham logic. In: Proc. of the 26th LICS, pp. 377–386. IEEE (2011)

    Google Scholar 

  9. Mayr, R.: Undecidable problems in unreliable computations. Theoretical Computer Science 297(1-3), 337–354 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Montanari, A., Puppis, G., Sala, P.: A decidable spatial logic with cone-shaped cardinal directions. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 394–408. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Montanari, A., Puppis, G., Sala, P.: Maximal decidable fragments of halpern and shoham’s modal logic of intervals. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 345–356. Springer, Heidelberg (2010)

    Google Scholar 

  12. Montanari, A., Puppis, G., Sala, P.: Decidability of the interval temporal logic \({A}\bar{A}{B}\bar{B}\) over the rationals. Tech. Rep. RR01/2014, Univ. of Udine (2014)

    Google Scholar 

  13. Schnoebelen, P.: Lossy counter machines decidability cheat sheet. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 51–75. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Venema, Y.: Two-dimensional modal logics for relation algebras and temporal logic of intervals. ITLI prepublication series LP-89-03, Univ. of Amsterdam (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Montanari, A., Puppis, G., Sala, P. (2014). Decidability of the Interval Temporal Logic \(\mathsf{A\bar{A}B\bar{B}}\) over the Rationals. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44522-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44522-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44521-1

  • Online ISBN: 978-3-662-44522-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics