Skip to main content

Tight Game Abstractions of Probabilistic Automata

  • Conference paper
CONCUR 2014 – Concurrency Theory (CONCUR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8704))

Included in the following conference series:

  • 857 Accesses

Abstract

We present a new game-based abstraction technique for probabilistic automata (PA). The key idea is to use distribution-based abstraction – preserving novel distribution-based (alternating) simulation relations – rather than classical state-based abstraction. These abstractions yield (simple) probabilistic game automata (PGA), turn-based 2 player stochastic games in which moves of both players – as opposed to classical stochastic games – yield distributions over states. As distribution-based (alternating) simulation relations are pre-congruences for composite PGA, abstraction can be done compositionally. Our abstraction yields tighter upper and lower bounds on (extremal) reachability probabilities than state-based abstraction. This shows the potential superiority over state-based abstraction of PA and Markov decision processes.

This research is supported by the EU FP7 SENSATION Project and the EU Marie-Curie Project MEALS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Massachusetts Institute of Technology (1995)

    Google Scholar 

  2. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wasowski, A.: Abstract probabilistic automata. Information and Computation 232, 66–116 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wąsowski, A.: Abstract probabilistic automata. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 324–339. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Sher, F., Katoen, J.-P.: Compositional abstraction techniques for probabilistic automata. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 325–341. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for probabilistic systems. J. Log. Algebr. Program. 81(4), 356–389 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based abstraction-refinement framework for Markov decision processes. Formal Methods in System Design 36(3), 246–280 (2010)

    Article  MATH  Google Scholar 

  7. Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences of the United States of America 39(10), 1095–1100 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  8. Condon, A.: The complexity of stochastic games. Information and Computation 96, 203–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wachter, B., Zhang, L.: Best probabilistic transformers. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 362–379. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE CS Press (1991)

    Google Scholar 

  11. Condon, A., Ladner, R.E.: Probabilistic game automata. Journal of Computer and System Sciences 36(3), 452–489 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ash, R.B., Doléans-Dade, C.A.: Probability & Measure Theory, 2nd edn. Academic Press (2000)

    Google Scholar 

  13. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Mathematics of Operations Research 16, 580–595 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. de Alfaro, L.: Computing minimum and maximum reachability times in probabilistic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 66–81. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Lynch, N.A., Segala, R., Vaandrager, F.W.: Observing branching structure through probabilistic contexts. SIAM J. Comput. 37(4), 977–1013 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351. IEEE CS Press (2010)

    Google Scholar 

  17. Doyen, L., Henzinger, T.A., Raskin, J.F.: Equivalence of labeled Markov chains. Int. J. Found. Comput. Sci. 19(3), 549–563 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. Kattenbelt, M.: Automated Quantitative Software Verification. PhD thesis, University of Oxford (2010)

    Google Scholar 

  20. Tarski, A., et al.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5(2), 285–309 (1955)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vira, F.S., Katoen, JP. (2014). Tight Game Abstractions of Probabilistic Automata. In: Baldan, P., Gorla, D. (eds) CONCUR 2014 – Concurrency Theory. CONCUR 2014. Lecture Notes in Computer Science, vol 8704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44584-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44584-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44583-9

  • Online ISBN: 978-3-662-44584-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics