Abstract
In many data mining and machine learning applications, data are not free, and there is a test cost for each data item. Due to economic, technological and legal reasons, it is neither possible nor necessary to obtain a classifier with 100 % accuracy. In this paper, we consider such a situation and propose a new constraint satisfaction problem to address it. With this in mind, one has to minimize the test cost to keep the accuracy of the classification under a budget. The constraint is expressed by the positive region, whereas the object is to minimizing the total test cost. The new problem is essentially a dual of the test cost constraint attribute reduction problem, which has been addressed recently. We propose a heuristic algorithm based on the information gain, the test cost, and a user specified parameter \(\lambda \) to deal with the new problem. The algorithm is tested on four University of California - Irvine datasets with various test cost settings. Experimental results indicate that the algorithm finds optimal feature subset in most cases, the rational setting of \(\lambda \) is different among datasets, and the algorithm is especially stable when the test cost is subject to the Pareto distribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, X.: An improved branch and bound algorithm for feature selection. Pattern Recogn. Lett. 24(12), 1925–1933 (2003)
Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1, 131–156 (1997)
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17, 37–54 (1996)
Greco, S., Matarazzo, B., Slowinski, R., Stefanowski, J.: Variable consistency model of dominance-based rough sets approach. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 170–181. Springer, Heidelberg (2001)
Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998). http://www.ics.uci.edu/~mlearn/mlrepository.html
He, H.P., Min, F.: Accumulated cost based test-cost-sensitive attribute reduction. In: Kuznetsov, S.O., Ślȩzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 244–247. Springer, Heidelberg (2011)
He, H.P., Min, F., Zhu, W.: Attribute reduction in test-cost-sensitive decision systems with common-test-costs. In: Proceedings of the 3rd International Conference on Machine Learning and Computing, vol. 1, pp. 432–436 (2011)
Hu, Q.H., Yu, D.R., Liu, J.F., Wu, C.: Neighborhood rough set based heterogeneous feature subset selection. Inf. Sci. 178(18), 3577–3594 (2008)
Hunt, E.B., Marin, J., Stone, P.J. (eds.): Experiments in Induction. Academic Press, New York (1966)
Lanzi, P.: Fast feature selection with genetic algorithms: a filter approach. In: IEEE International Conference on Evolutionary Computation 1997. IEEE (1997)
Lin, T.Y.: Granular computing on binary relations - analysis of conflict and Chinese wall security policy. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 296–299. Springer, Heidelberg (2002)
Lin, T.Y.: Granular computing - structures, representations, and applications. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 16–24. Springer, Heidelberg (2003)
Liu, Q.H., Li, F., Min, F., Ye, M., Yang, W.G.: An efficient reduction algorithm based on new conditional information entropy. Control Decis. (in Chinese) 20(8), 878–882 (2005)
Liu, J.B., Min, F., Liao, S.J., Zhu, W.: A genetic algorithm to attribute reduction with test cost constraint. In: Proceedings of 6th International Conference on Computer Sciences and Convergence Information Technology, pp. 751–754 (2011)
Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. The Springer International Series in Engineering and Computer Science, vol. 454. Kluwer Academic Publishers, Boston (1998)
Ma, L.W.: On some types of neighborhood-related covering rough sets. Int. J. Approx. Reason. 53(6), 901–911 (2012)
Min, F., He, H.P., Qian, Y.H., Zhu, W.: Test-cost-sensitive attribute reduction. Inf. Sci. 181, 4928–4942 (2011)
Min, F., Hu, Q.H., Zhu, W.: Feature selection with test cost constraint. Int. J. Approximate Reasoning (2013, to appear). doi:10.1016/j.ijar.2013.04.003
Min, F., Liu, Q.H.: A hierarchical model for test-cost-sensitive decision systems. Inf. Sci. 179, 2442–2452 (2009)
Min, F., Zhu, W.: Attribute reduction with test cost constraint. J. Electr. Sci. Technol. China 9(2), 97–102 (2011)
Min, F., Zhu, W.: Minimal cost attribute reduction through backtracking. In: Kim, T., et al. (eds.) DTA/BSBT 2011. CCIS, vol. 258, pp. 100–107. Springer, Heidelberg (2011)
Min, F., Zhu, W.: Optimal sub-reducts in the dynamic environment. In: Proceedings of IEEE International Conference on Granular Computing, pp. 457–462 (2011)
Min, F., Zhu, W.: Optimal sub-reducts with test cost constraint. In: Yao, J.T., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 57–62. Springer, Heidelberg (2011)
Min, F., Zhu, W., Zhao, H., Pan, G.Y., Liu, J.B., Xu, Z.L.: Coser: cost-sensitive rough sets (2012). http://grc.fjzs.edu.cn/~fmin/coser/
Pan, G.Y., Min, F., Zhu, W.: A genetic algorithm to the minimal test cost reduct problem. In: Proceedings of IEEE International Conference on Granular Computing. pp. 539–544 (2011)
Pawlak, Z.: Rough set approach to knowledge-based decision support. Eur. J. Oper. Res. 99, 48–57 (1997)
Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
Pawlak, Z.: Rough sets and intelligent data analysis. Inf. Sci. 147(12), 1–12 (2002)
Qian, Y.H., Liang, J.Y., Pedrycz, W., Dang, C.Y.: Positive approximation: an accelerator for attribute reduction in rough set theory. Artif. Intell. 174(9–10), 597–618 (2010)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Intelligent Decision Support (1992)
Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recogn. Lett. 24(6), 833–849 (2003)
Tseng, T.L.B., Huang, C.-C.: Rough set-based approach to feature selection in customer relationship management. Omega 35(4), 365–383 (2007)
Wang, G.Y.: Attribute core of decision table. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 213–217. Springer, Heidelberg (2002)
Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R.: Feature selection based on rough sets and particle swarm optimization. Pattern Recogn. Lett. 28(4), 459–471 (2007)
Xu, Z.L., Min, F., Liu, J.B., Zhu, W.: Ant colony optimization to minimal test cost reduction. In: Proceedings of the 2011 IEEE International Conference on Granular Computing. pp. 688–693 (2012)
Yao, J.T., Zhang, M.: Feature selection with adjustable criteria. In: Ślȩzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 204–213. Springer, Heidelberg (2005)
Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models. Inf. Sci. 178(17), 3356–3373 (2008)
Zhang, W.X., Mi, J., Wu, W.: Knowledge reductions in inconsistent information systems. Chin. J. Comput. 26(1), 12–18 (2003)
Zhao, H., Min, F., Zhu, W.: A backtracking approach to minimal cost feature selection of numerical data. J. Inf. Comput. Sci. 10(13), 4105–4115 (2013)
Zhao, H., Min, F., Zhu, W.: Test-cost-sensitive attribute reduction based on neighborhood rough set. In: Proceedings of the 2011 IEEE International Conference on Granular Computing, pp. 802–806 (2011)
Zhao, H., Min, F., Zhu, W.: Test-cost-sensitive attribute reduction of data with normal distribution measurement errors. Math. Prob. Eng. 2013, 12 pp (2013)
Zhong, N., Dong, Z.J., Ohsuga, S.: Using rough sets with heuristics to feature selection. J. Intell. Inf. Syst. 16(3), 199–214 (2001)
Zhu, W.: Generalized rough sets based on relations. Inf. Sci. 177(22), 4997–5011 (2007)
Zhu, W.: Topological approaches to covering rough sets. Inf. Sci. 177(6), 1499–1508 (2007)
Zhu, W.: Relationship between generalized rough sets based on binary relation and covering. Inf. Sci. 179(3), 210–225 (2009)
Zhu, W., Wang, F.: Reduction and axiomization of covering generalized rough sets. Inf. Sci. 152(1), 217–230 (2003)
Acknowledgements
This work is partially supported by the Natural Science Foundation of Department of Education of Sichuan Province under Grant No. 13ZA0136, and National Science Foundation of China under Grant Nos. 61379089, 61379049.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Liu, J., Min, F., Zhao, H., Zhu, W. (2014). Feature Selection with Positive Region Constraint for Test-Cost-Sensitive Data. In: Peters, J.F., Skowron, A., Li, T., Yang, Y., Yao, J., Nguyen, H.S. (eds) Transactions on Rough Sets XVIII. Lecture Notes in Computer Science(), vol 8449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44680-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-662-44680-5_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44679-9
Online ISBN: 978-3-662-44680-5
eBook Packages: Computer ScienceComputer Science (R0)