Skip to main content

Efficient Indexed Alignment of Contigs to Optical Maps

  • Conference paper
Algorithms in Bioinformatics (WABI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8701))

Included in the following conference series:

Abstract

Since its emergence almost 20 years ago (Schwartz et al., Science 1995), optical mapping has undergone a transition from laboratory technique to commercially available data generation method. In line with this transition, it is only relatively recently that optical mapping data has started to be used for scaffolding contigs and assembly validation in large-scale sequencing projects — for example, the goat (Dong et al., Nature Biotech. 2013) and amborella (Chamala et al., Science 2013) genomes. One major hurdle to the wider use of optical mapping data is the efficient alignment of in silico digested contigs to an optical map. We develop Twin to tackle this very problem. Twin is the first index-based method for aligning in silico digested contigs to an optical map. Our results demonstrate that Twin is an order of magnitude faster than competing methods on the largest genome. Most importantly, it is specifically designed to be capable of dealing with large eukaryote genomes and thus is the only non-proprietary method capable of completing the alignment for the budgerigar genome in a reasonable amount of CPU time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkan, C., Sajjadian, S., Eichler, E.: Limitations of next-generation genome sequence assembly. Nat. Methods 8(1), 61–65 (2010)

    Article  Google Scholar 

  2. Anantharaman, T., Mishra, B.: A probabilistic analysis of false positives in optical map alignment and validation. In: Proc. of WABI, pp. 27–40 (2001)

    Google Scholar 

  3. Antoniotti, M., Anantharaman, T., Paxia, S., Mishra, B.: Genomics via optical mapping iv: sequence validation via optical map matching. Technical report, New York University (2001)

    Google Scholar 

  4. Aston, C., Schwartz, D.: Optical mapping in genomic analysis. John Wiley and Sons, Ltd. (2006)

    Google Scholar 

  5. Bankevich, A., et al.: others. SPAdes: a new Genome assembly algorithm and its applications to single-cell sequencing. J. Comp. Biol. 19(5), 455–477 (2012)

    MathSciNet  Google Scholar 

  6. Bradnam, K.R., et al.: Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience 2(1), 1–31 (2013)

    Article  Google Scholar 

  7. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm. Technical Report 124, Digital Equipment Corporation, Palo Alto, California (1994)

    Google Scholar 

  8. Chamala, S., et al.: Assembly and validation of the genome of the nonmodel basal angiosperm amborella. Science 342(6165), 1516–1517 (2013)

    Article  Google Scholar 

  9. Church, D.M., et al.: Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biology 7(5), e1000112+ (2009)

    Google Scholar 

  10. Dimalanta, et al.: A microfluidic system for large dna molecule arrays. Anal. Chem. 76(18), 5293–5301 (2004)

    Google Scholar 

  11. Dong, Y., et al.: Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (capra hircus). Nat. Biotechnol. 31(2), 136–141 (2013)

    Google Scholar 

  12. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581 (2005)

    Article  MathSciNet  Google Scholar 

  13. Gagie, T., Navarro, G., Puglisi, S.J.: New algorithms on wavelet trees and applications to information retrieval. Theor. Comput Sci. 426-427, 25–41 (2012)

    Google Scholar 

  14. Gog, S., Petri, M.: Optimized succinct data structures for massive data. Software Pract. Expr. (to appear)

    Google Scholar 

  15. Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G.: QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8), 1072–1075 (2013)

    Article  Google Scholar 

  16. Howard, J.T., et al.: De Novo high-coverage sequencing and annotated assemblies of the budgerigar genome (2013)

    Google Scholar 

  17. Kawahara, Y., et al.: Improvement of the oryza sativa nipponbare reference genome using next generation sequence and optical map data. Rice 6(4), 1–10 (2013)

    Google Scholar 

  18. Kent, J.: BLAT–The BLAST-Like Alignment Tool. Genome Res. 12(4), 656–664 (2002)

    Article  MathSciNet  Google Scholar 

  19. Lin, H., et al.: AGORA: Assembly Guided by Optical Restriction Alignment. BMC Bioinformatics 12, 189 (2012)

    Article  Google Scholar 

  20. Manber, U., Myers, G.W.: Suffix arrays: A new method for on-line string searches. SIAM J. Sci. Comput. 22(5), 935–948 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Miller, J.R., et al.: Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24, 2818–2824 (2008)

    Article  Google Scholar 

  22. Nagarajan, N., Read, T.D., Pop, M.: Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics 24(10), 1229–1235 (2008)

    Article  Google Scholar 

  23. Neely, R.K., Deen, J., Hofkens, J.: Optical mapping of DNA: single-molecule-based methods for mapping genome. Biopolymers 95(5), 298–311 (2011)

    Article  Google Scholar 

  24. Reslewic, S., et al.: Whole-genome shotgun optical mapping of rhodospirillum rubrum. Appl. Environ. Microbiol. 71(9), 5511–5522 (2005)

    Article  Google Scholar 

  25. Ronen, R., Boucher, C., Chitsaz, H., Pevzner, P.: SEQuel: Improving the Accuracy of Genome Assemblies. Bioinformatics 28(12), i188–i196 (2012)

    Google Scholar 

  26. Salzberg, S.: Beware of mis-assembled genomes. Bioinformatics 21(24), 4320–4321 (2005)

    Article  Google Scholar 

  27. Sirén, J., Välimäki, N., Mäkinen, V.: Indexing graphs for path queries with applications in genome research. IEEE/ACM Trans. Comput. Biol. Bioinform. (to appear, 2014)

    Google Scholar 

  28. Teague, B., et al.: High-resolution human genome structure by single-molecule analysis. Proc. Natl. Acad. Sci. 107(24), 10848–10853 (2010)

    Article  Google Scholar 

  29. Thorvaldsdòttir, H., Robinson, J.T., Mesirov, J.P.: Integrative Genomics Viewer (IGV): High-performance Genomics Data Visualization and Exploration. Brief. Bioinform. 14(2), 178–192 (2013)

    Article  Google Scholar 

  30. Valouev, A., et al.: Alignment of optical maps. J. Comp. Biol. 13(2), 442–462 (2006)

    Article  MathSciNet  Google Scholar 

  31. VanSteenHouse, H. personal communication (2013)

    Google Scholar 

  32. Zhou, S., et al.: A whole-genome shotgun optical map of yersinia pestis strain KIM. Appl. Environ. Microbiol. 68(12), 6321–6331 (2002)

    Article  Google Scholar 

  33. Zhou, S., et al.: Shotgun optical mapping of the entire leishmania major Friedlin genome. Mol. Biochem. Parasitol. 138(1), 97–106 (2004)

    Article  Google Scholar 

  34. Zhou, S., et al.: A single molecule scaffold for the maize genome. PLoS Genet. 5(11), e1000711 (2009)

    Google Scholar 

  35. Zhou, S., et al.: Validation of rice genome sequence by optical mapping. BMC Genomics 8(1), 278 (2007)

    Article  Google Scholar 

  36. Zimin, A., et al.: Sequencing and assembly of the 22-gb loblolly pine genome. Genetics 196(3), 875–890 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muggli, M.D., Puglisi, S.J., Boucher, C. (2014). Efficient Indexed Alignment of Contigs to Optical Maps. In: Brown, D., Morgenstern, B. (eds) Algorithms in Bioinformatics. WABI 2014. Lecture Notes in Computer Science(), vol 8701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44753-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44753-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44752-9

  • Online ISBN: 978-3-662-44753-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics