Abstract
In this paper, we consider the minimum biclique cover and minimum biclique partition problems on bipartite graphs. In the minimum biclique cover problem, we are given an input bipartite graph G = (V,E), and our goal is to compute the minimum number of complete bipartite subgraphs that cover all edges of G. This problem, besides its correspondence to a well-studied notion of bipartite dimension in graph theory, has applications in many other research areas such as artificial intelligence, computer security, automata theory, and biology. Since it is NP-hard, past research has focused on approximation algorithms, fixed parameter tractability, and special graph classes that admit polynomial time exact algorithms. For the minimum biclique partition problem, we are interested in a biclique cover that covers each edge exactly once.
We revisit the problems from approximation algorithms’ perspectives and give nearly tight lower and upper bound results. We first show that both problems are NP-hard to approximate to within a factor of n 1 − ε (where n is the number of vertices in the input graph). Using a stronger complexity assumption, the hardness becomes \(\tilde \Omega(n)\), where \(\tilde \Omega(\cdot)\) hides lower order terms. Then we show that approximation factors of the form n/(logn)γ for some γ > 0 can be obtained.
Our hardness results have many consequences: (i) \(\tilde \Omega(n)\) hardnesses for computing the Boolean rank and non-negative integer rank of an n-by-n matrix (ii) \(\tilde \Omega(n)\) hardness for minimizing the number of states in a deterministic finite automaton (DFA), given an n-state DFA as input, and (iii) \(\tilde \Omega(\sqrt{n})\) hardness for computing minimum NFA from a truth table of size n. These results settle some of the most basic problems in the area of regular language optimization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for maximum edge biclique, minimum linear arrangement, and sparsest cut. SIAM J. Comput. 40(2), 567–596 (2011)
Amilhastre, J., Janssen, P., Vilarem, M.-C.: FA minimisation heuristics for a class of finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 1–12. Springer, Heidelberg (2001)
Amilhastre, J., Vilarem, M., Janssen, P.: Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs. Discrete Applied Mathematics 86(2-3), 125–144 (1998)
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied Mathematics, Philadelphia (1999)
Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Graph products revisited: Tight approximation hardness of induced matching, poset dimension and more. In: Khanna, S. (ed.) SODA, pp. 1557–1576. SIAM (2013)
Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent set, induced matching, and pricing: Connections and tight (subexponential time) approximation hardnesses. In: FOCS, pp. 370–379. IEEE Computer Society (2013)
Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Coloring graph powers: Graph product bounds and hardness of approximation. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 409–420. Springer, Heidelberg (2014)
Ene, A., Horne, W., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast exact and heuristic methods for role minimization problems. In: SACMAT 2008, pp. 1–10. ACM, New York (2008)
Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorithmica 47(4), 439–452 (2007)
Feige, U.: Relations between average case complexity and approximation complexity. In: Reif, J.H. (ed.) STOC, pp. 534–543. ACM (2002)
Feige, U.: Approximating maximum clique by removing subgraphs. SIAM Journal on Discrete Mathematics 18(2), 219–225 (2004)
Feige, U., Kilian, J.: Zero knowledge and the chromatic number. Journal of Computer and System Sciences 57, 187–199 (1998)
Gramlich, G., Schnitger, G.: Minimizing NFA’s and regular expressions. J. Comput. Syst. Sci. 73(6), 908–923 (2007)
Gregory, D.A., Pullman, N.J., Jones, K.F., Lundgren, J.R.: Biclique coverings of regular bigraphs and minimum semiring ranks of regular matrices. J. Comb. Theory, Ser. B 51(1), 73–89 (1991)
Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition complexity assuming P ≠ NP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007)
Halldórsson, M.M.: A still better performance guarantee for approximate graph coloring. Information Processing Letters 45(1), 19–23 (1993)
Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata–a survey. Information and Computation 209(3), 456–470 (2011)
Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. In: Albert, J.L., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 629–640. Springer, Heidelberg (1991)
Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9(3), 256–278 (1974)
Khot, S., Ponnuswami, A.K.: Better inapproximability results for maxclique, chromatic number and min-3lin-deletion. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226–237. Springer, Heidelberg (2006)
Milind Dawande, P.K., Tayur, S.: On the biclique problem in bipartite graphs. GSIA Working Paper, Carnegie Mellon University, Pittsburgh (1996)
Müller, H.: Alternating cycle-free matchings. Order 7(1), 11–21 (1990)
Müller, H.: On edge perfectness and classes of bipartite graphs. Discrete Mathematics 149(1-3), 159–187 (1996)
Nau, D.S., Markowsky, G., Woodbury, M.A., Amos, D.B.: A mathematical analysis of human leukocyte antigen serology. Mathematical Biosciences 40(3-4), 243–270 (1978)
Nor, I., Hermelin, D., Charlat, S., Engelstadter, J., Reuter, M., Duron, O., Sagot, M.-F.: Mod/Resc parsimony inference: Theory and application. Inf. Comput. 213, 23–32 (2012)
Orlin, J.: Contentment in graph theory: Covering graphs with cliques. Indagationes Mathematicae (Proceedings) 80(5), 406–424 (1977)
Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Applied Mathematics 131(3), 651–654 (2003)
Simon, H.: On approximate solutions for combinatorial optimization problems. SIAM Journal on Discrete Mathematics 3(2), 294–310 (1990)
Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 681–690. ACM, New York (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chalermsook, P., Heydrich, S., Holm, E., Karrenbauer, A. (2014). Nearly Tight Approximability Results for Minimum Biclique Cover and Partition. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-662-44777-2_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44776-5
Online ISBN: 978-3-662-44777-2
eBook Packages: Computer ScienceComputer Science (R0)