
A Faster Algorithm for Computing Straight
Skeletons?

Siu-Wing Cheng1, Liam Mencel2, and Antoine Vigneron2

1 The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

scheng@cse.ust.hk
2 King Abdullah University of Science and Technology

Thuwal 23955-6900, Saudi Arabia
{antoine.vigneron,liam.mencel}@kaust.edu.sa

Abstract. We present a new algorithm for computing the straight skele-
ton of a polygon. For a polygon with n vertices, among which r are reflex
vertices, we give a deterministic algorithm that reduces the straight skele-
ton computation to a motorcycle graph computation in O(n(logn) log r)
time. It improves on the previously best known algorithm for this reduc-
tion, which is randomized, and runs in expected O(n

√
h + 1 log2 n) time

for a polygon with h holes. Using known motorcycle graph algorithms,
our result yields improved time bounds for computing straight skeletons.
In particular, we can compute the straight skeleton of a non-degenerate
polygon in O(n(logn) log r + r4/3+ε) time for any ε > 0. On degenerate
input, our time bound increases to O(n(logn) log r + r17/11+ε).

1 Introduction

The straight skeleton of a polygon is defined as the trace of the vertices when the
polygon shrinks, each edge moving at the same speed inwards in a perpendicular
direction to its orientation. (See Fig. 1.) It differs from the medial axis [7] in that
it is a straight line graph embedded in the original polygon, while the medial axis
may have parabolic edges. The notion was introduced by Aichholzer et al. [1]
in 1995, who gave the earliest algorithm for computing the straight skeleton.
However, the concept has been recognized as early as 1877 by von Peschka [20],
in his interpretation as projection of roof surfaces.

The straight skeleton has numerous applications in computer graphics. It
allows to compute offset polygons [14], which is a standard operation in CAD.
Other applications include architectural modelling [19], biomedical image pro-
cessing [8], city model reconstruction [10], computational origami [11–13] and
polyhedral surface reconstruction [2, 9, 15]. Improving the efficiency of straight
skeleton algorithms increases the speed of related tools in geometric computing.

The first algorithm by Aichholzer et al. [1] runs in O(n2 log n) time, and sim-
ulates the shrinking process discretely. Eppstein and Erickson [14] developed the

? Liam Mencel was supported by KAUST base funding. Research supported by the
Research Grants Council, Hong Kong, China (project no. 611711).

This is the Pre-Published Version 



2 Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron

(a) The input polygon P. (b) An offset of P. (c) Straight skeleton S.

Fig. 1: The straight skeleton is obtained by shrinking the input polygon P.

first sub-quadratic algorithm, which runs inO(n17/11+ε) time. In their work, they
proposed motorcycle graphs as a means of encapsulating the main difficulty in
computing straight skeletons. Cheng and Vigneron [6] expanded on this notion by
reducing the straight skeleton problem in non-degenerate cases to a motorcycle
graph computation and a lower envelope computation. This reduction was later
extended to degenerate cases by Held and Huber [17]. Cheng and Vigneron gave
an algorithm for the lower envelope computation on a non-degenerate polygon
with h holes, which runs in O(n

√
h+ 1 log2 n) expected time. They also pro-

vided a method for solving the motorcycle graph problem in O(n
√
n log n) time.

Putting the two together gives an algorithm which solves the straight skeleton
problem in O(n

√
h+ 1 log2 n+ r

√
r log r) expected time, where r is the number

of reflex vertices.

Comparison with previous work. Recently, Vigneron and Yan [21] found a faster,
O(n4/3+ε)-time algorithm for computing motorcycle graphs. It thus removed
one bottleneck in straight skeleton computation. In this paper we remove the
second bottleneck: We give a faster reduction to the motorcycle graph problem.
Our algorithm performs this reduction in deterministic O(n(log n) log r) time,
improving on the previously best known algorithm, which is randomized and
runs in expected O(n

√
h+ 1 log2 n) time [6]. Recently, Bowers independently

discovered an O(n log n)-time, deterministic algorithm to perform this reduction
in the case of simple polygons, using a very different approach [4].

Using known algorithms for computing motorcycle graphs, our reduction
yields faster algorithms for computing the straight skeleton. In particular, using
the algorithm by Vigneron and Yan [21], we can compute the straight skeleton
of a non-degenerate polygon in O(n(log n) log r + r4/3+ε) time for any ε > 0.
On degenerate input, we use Eppstein and Erickson’s algorithm, and our time
bound increases to O(n(log n) log r + r17/11+ε). For simple polygons whose co-
ordinates are O(log n)-bit rational numbers, we can compute the straight skele-
ton in O(n log2 n) time using the motorcycle graph algorithm by Vigneron and
Yan [21] (even in degenerate cases). Table 1 summarizes the previously known
results and compares with our new algorithm.

Our approach. We use the known reduction to a lower envelope of slabs in 3D [6,
17]: First a motorcycle graph induced by the input polygon is computed, and
then this graph is used to define a set of slabs in 3D. The lower envelope of these

This is the Pre-Published Version 



A Faster Algorithm for Computing Straight Skeletons 3

Previously best known This paper

Arbitrary polygon O(n8/11+εr9/11+ε) [14] O(n(logn) log r + r17/11+ε)

Non-degenerate polygon O∗(n
√
r log2 n) [6] O(n(logn) log r + r4/3+ε)

Simple pol., arbitrary O∗(n log2 n + r17/11+ε) [6, 14] O(n(logn) log r + r17/11+ε)

Simple pol., O(logn) bits O∗(n log2 n) [6, 21] O(n log2 n)

Table 1: O∗ denotes the expected time bound of a randomized algorithm, and O
is for deterministic algorithms. To make the comparison easier, we replaced the
number of holes h with r, as h = O(r).

slabs is a terrain, whose edges vertically project to the straight skeleton on the
horizontal plane. (See Section 2.)

The difficulty is that these slabs may cross, and in general their lower envelope
is a non-convex terrain, so known algorithms for computing lower envelopes of
triangles would be too slow for our purpose. Our approach is thus to remove non-
convex features: We compute a subdivision of the input polygon into convex cells
such that, above each cell of this subdivision, the terrain is convex. Then the
portion of the terrain above each cell can be computed efficiently, as it reduces
to computing a lower envelope of planes in 3D. The subdivision is computed
recursively, using a divide and conquer approach, in two stages.

During the first stage (Section 3), we partition using vertical lines, that is,
lines parallel to the y-axis. At each step, we pick the vertical line ` through the
median motorcycle vertex in the current cell. We first cut the cell using `, and
we compute the restriction of the terrain to the space above `, which forms a
polyline. It can be computed in near-linear time, as it reduces to computing a
lower envelope of line segments in the vertical plane through `. Then we cut
the cell using the steepest descent paths from the vertices of this polyline. (See
Fig. 2b.) We recurse until the current cell does not contain any vertex of the
motorcycle graph. (See Fig. 2c.)

The first step ensures that the cells of the subdivision are convex. However,
valleys (non-convex edges) may still enter the interior of the cells. So our second
stage (Section 4) recursively partitions cells using lines that split the set of
valleys of the current cell, instead of vertical lines. (See Fig. 2d.) As the first
stage results in a partition where the restriction of the motorcycle graph to any
cell is outerplanar, we can perform this subdivision efficiently by divide and
conquer.

Each time we partition a cell, we know which slabs contribute to the child
cells, as we know the terrain along the vertical plane through the cutting line.
In addition, we will argue via careful analysis that our divide and conquer ap-
proach avoids slabs being used in too many iterations, and hence the algorithm
completes in O(n(log n) log r) time.

Due to space limitation, some proofs are missing from this extended abstract.
A more detailed description of our algorithm, as well as the missing proofs, can
be found in the full version of this paper [5]. We state here our main result:

This is the Pre-Published Version 



4 Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron

(a) Input polygon and straight skele-
ton.

(b) Subdivision induced by the first
vertical cut.

(c) Result of the vertical subdivision. (d) Final subdivision.

Fig. 2: Example of subdivision computed by our algorithm.

Theorem 1. Given a polygon P with n vertices, r of which being reflex ver-
tices, and given the motorcycle graph induced by P, we can compute the straight
skeleton of P in O(n(log n) log r) time.

Our algorithm does not handle weighted straight skeletons [14] (where edges
move at different speeds during the shrink process), because the reduction to a
lower envelope of slabs does not hold in this case.

2 Notations and Preliminaries

The input polygon is denoted by P. A reflex vertex of a polygon is a vertex
at which the internal angle is more than π. P has n vertices, among which r
are reflex vertices. We work in R3 with P lying flat in the xy-plane. The z-axis
becomes analogous to the time dimension. We say that a line, or a line segment,
is vertical, if it is parallel to the y-axis, and we say that a plane is vertical if

This is the Pre-Published Version 



A Faster Algorithm for Computing Straight Skeletons 5

it is orthogonal to the xy-plane. The boundary of a set A is denote by ∂A. We
denote by pq the line segment with endpoints p, q.

Terrain. At any time, the horizontal plane z = t contains a snapshot of P after
shrinking for t units of time. While the shrinking polygon moves vertically at
unit speed, faces are formed as the trace of the edges, and these faces make an
angle π/4 with the xy-plane. The surface formed by the traces of the edges is
the terrain T . (See Fig. 3 a.) The traces of the vertices of P form the set of edges
of T . An edge e of T is convex if there is a plane through e that is above the
two faces bounding e. The edges of T corresponding to the traces of the reflex
vertices will be referred to as valleys. Valleys are the only non-convex edges on
T . The other edges, which are convex, are called ridges. The straight skeleton S
is the graph obtained by projecting the edges and vertices of T orthogonally onto
the xy-plane. We also call valleys and ridges the edges of S that are obtained by
projecting valleys and ridges of T onto the xy-plane.

π
4

(a) (b)

T P

Fig. 3: Illustration of the two different types of slabs. (a) The terrain T , an edge
slab and motorcycle slab. This terrain has two valleys, adjacent to the two reflex
vertices of the polygon. (b) The motorcycle graph associated with P and the
boundaries of the edge slab and the motorcycle slab viewed from above.

Motorcycle graph. Our algorithm for computing the straight skeleton assumes
that a motorcycle graph induced by P is precomputed [6]. This graph is defined
as follows. A motorcycle is a point moving at a fixed velocity. We place a mo-
torcycle at each reflex vertex of P. The velocity of a motorcycle is the same as
the velocity of the corresponding reflex vertex when P is shrunk, so its direction
is the bisector of the interior angle, and its speed is 1/ sin(θ/2), where θ is the
exterior angle at the reflex vertex. (See Fig. 4a.)

The motorcycles begin moving simultaneously. They each leave behind a
track as they move. When a motorcycle collides with either another motorcycle’s

This is the Pre-Published Version 



6 Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron

θ1/ sin(θ2)

(a) (b)

Fig. 4: Motorcycle graph.

track or the boundary of P, the colliding motorcycle halts permanently. (In
degenerate cases, a motorcycle may also collide head-on with another motorcycle,
but for now we rule out this case.) After all motorcycles stop, the tracks form a
planar graph called the motorcycle graph induced by P. (see Fig. 4b.)

General position assumptions. To simplify the description and the analysis of
our algorithm, we assume that the polygon is in general position. No edge of P
or S is vertical. No two motorcycles collide with each other in the motorcycle
graph, and thus each valley is adjacent to some reflex vertex. Each vertex in the
straight skeleton graph has degree 1 or 3. Our results, however, generalize to
degenerate polygons.

Lifting map. The lifted version p̂ of a point p ∈ P is the point on T that is
vertically above p. In other words, p̂ is the point of T that projects orthogonally
to p on the xy-plane. We may also apply this transformation to a line segment
s in the xy-plane, then ŝ is a polyline in T . We will abuse notation and denote
by Ĝ a lifted version of G where the height of a point is the time at which the
corresponding motorcycle reaches it. Then the lifted version ê of an edge e of
G does not lie entirely on T , but it contains the corresponding valley, and the
remaining part of ê lies above T [6]. (See Fig. 3a.)

Given a point p̂ that lies in the interior of a face f of T , there is a unique
steepest descent path from p̂ to the boundary of P. This path consists either of
a straight line segment orthogonal to the base edge e of f , or it consists of a
segment going straight to a valley, and then follows this valley. (In degenerate
cases, the path may follow several valleys consecutively.) If p̂ is on a ridge, then
two such descent paths from p exist, and if p̂ is a convex vertex, then there are
three such paths. (See Fig. 5c.)

Reduction to a lower envelope. Following Eppstein and Erickson [14], Cheng
and Vigneron [6], and Held and Huber [17], we use a construction of the straight
skeleton based on the lower envelope of a set of three-dimensional slabs. Each
edge e of P defines an edge slab, which is a 2-dimensional half-strip at an an-
gle of π/4 to the xy-plane, bounded below by e and along the sides by rays
perpendicular to e. (See Fig. 3.) We say that e is the source of this edge slab.

This is the Pre-Published Version 



A Faster Algorithm for Computing Straight Skeletons 7

(a) The skeleton S. (b) The skeleton S ′. (c) Descent paths.

Fig. 5: The polygon P, its skeletons, and descent paths.

For each reflex vertex v = e∩e′, where e and e′ are edges of P, we define two
motorcycle slabs making angles of π/4 to the xy-plane. One motorcycle slab is
bounded below by the edge of Ĝ incident to v and is bounded on the sides by two
rays from each end of this edge in the ascent direction of e. The other motorcycle
slab is defined similarly with e replaced by e′. The source of a motorcycle slab is
the corresponding edge of Ĝ. Cheng and Vigneron [6] proved the following result,
which was extended to degenerate cases by Huber and Held [16]:

Theorem 2. The terrain T is the restriction of the lower envelope of the edge
slabs and the motorcycle slabs to the space vertically above the polygon.

Our algorithm constructs a graph S ′, which is obtained from S by adding
two edges at each reflex vertex v of P going inwards and orthogonally to each
edge of P incident to v. (See Fig. 5b.) We also include the edges of P into S ′.
It means that each face f of S ′ corresponds to exactly one slab. More precisely,
a face is the vertical projection of T ∩ σ to the xy-plane for some slab σ. By
contrast, in the original straight skeleton S, a face incident to a reflex vertex
corresponds to one edge slab and one motorcycle slab.

3 Computing the Vertical Subdivision

In this section, we describe and we analyze the first stage of our algorithm,
where the input polygon P is recursively partitioned using vertical cuts. The
corresponding procedure is called Divide-Vertical. It results in a subdivision
of the input polygon P, such that any cell of this subdivision has the following
property: It does not contain any vertex of G in its interior, or it is contained in
the union of two faces of S ′.

3.1 Subdivision Induced by a Vertical Cut

At any step of the algorithm, we maintain a planar subdivision K(P), which is
a partition of the input polygon P into polygonal cells. Each cell is a polygon,
hence it is connected. A cell C in the current subdivision K(P) may be further
subdivided as follows.

This is the Pre-Published Version 



8 Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron

Let ` be a vertical line through a vertex of G. We assume that ` intersects C,
and hence C ∩ ` consists of several line segments s1, . . . , sq. These line segments
are introduced as new boundary edges in K(P); they are called the vertical edges
of K(P). They may be further subdivided during the course of the algorithm,
and we still call the resulting edges vertical edges.

We then insert non-vertical edges along steepest descent paths, as follows.
Note that we are able to efficiently compute the intersection S ′ ∩ ` without
knowing S ′. To do this, we make use of an algorithm by Hershberger [18] and
compute the lower envelope of the slabs restricted to the vertical plane through
`, using O(n log n) time. The points at which this envelope changes angle are
precisely the points on T which project onto S ′ ∩ `. Each intersection point
p ∈ sj∩S ′ has a lifted version p̂ on T . By our non-degeneracy assumptions, there
are at most three steepest descent paths to ∂C from p̂. The vertical projections
of these paths onto C are also inserted as new edges in K(P). The resulting
partition of C is the subdivision induced by `. (See Fig. 2.)

We denote by C1, C2, . . . the cells of K(P) that are constructed during the
course of the algorithm. Let `−i and `+i denote the vertical lines through the
leftmost and rightmost point of Ci, respectively. When we perform one step of
the subdivision, each new cell lies entirely to the left or to the right of the
splitting line, and thus by induction, any vertical edge of a cell Ci either lies in
`−i or `+i .

An empty cell is a cell of K(P) whose interior does not overlap with S ′. (See
Fig. 6a.) Thus an empty cell is entirely contained in a face of S ′. Another type of

∂P

`∂f

C1

C2

C3
C4

C5

(a) The cells C1, . . . , C5 are empty. The
first cut is performed along `.

`b

a
b

p q

`a

C

(b) The wedge C corresponding to ab.

Fig. 6: Empty cells and a wedge.

cell, called a wedge, will play an important role in the analysis of our algorithm.
Let pq be a ridge of S ′, and let a, b be two points in the interior of pq. Let `a and
`b be the vertical lines through a and b, respectively. Consider the subdivision of
P obtained by inserting vertical boundaries along `a and `b, and the four descent

This is the Pre-Published Version 



A Faster Algorithm for Computing Straight Skeletons 9

paths from a and b. (See Fig. 6b.) The cell of this subdivision containing ab is
called the wedge corresponding to ab.

3.2 Data Structure

During the course of the algorithm, we maintain the polygon P and its subdivi-
sion K(P) in a doubly-connected edge list [3]. So each cell Ci is represented by
a circular list of edges, or several if it has holes. In the following, we show how
we augment these chains so that they record incidences between the boundary
of Ci and the faces of S ′.

For each cell Ci, let S ′i be the subdivision of Ci induced by S ′. So the faces of
S ′i are the connected components of Ci \ S ′. Let Q denote a circular list of edges
that form one component of ∂Ci. We subdivide each vertical edge of Q at each
intersection point with an edge of S ′. Now each edge e of Q bounds exactly one
face fj of S ′i. We store a pointer from e to the slab σj corresponding to fj . In
addition, for each vertex of Q which is a reflex vertex of P, we store pointers to
the two corresponding motorcycle slabs. We call this data structure a face list.
So we store one face list for each connected component of ∂Ci.

We say that a vertex v of the motorcycle graph G conflicts with a cell Ci of
K(P) if either v lies in the interior of Ci, or v is a reflex vertex of ∂Ci. We also
store the list of all the vertices conflicting with each cell Ci. This list Vi is called
the vertex conflict list of Ci. The size of this list is denoted by vi. In summary,
our data structure consists of:

– A doubly-connected edge list storing K(P).
– The face lists and the vertex conflict list Vi of each cell Ci.

We say that an edge e of S ′ conflicts with the cell Ci if it intersects the interior
of Ci. So any edge of S ′i that is not on ∂Ci is of the form e ∩ Ci for some edge e
of S ′ conflicting with Ci. We denote by ci the number of edges conflicting with
Ci. During the course of the algorithm, we do not necessarily know all the edges
conflicting with a cell Ci, and we don’t even know ci, but this quantity will be
useful for analyzing the running time. In particular, it allows to bound the size
of the data structure for Ci. (The proof is omitted due to space limitation.)

Lemma 1. If Ci is non-empty, then the total size of the face lists of Ci is O(ci).
In particular, it implies that ∂Ci has O(ci) edges, and Ci overlaps O(ci) faces of
S ′. On the other hand, if Ci is empty, then the total size is O(1), and thus ∂Ci
has O(1) edges.

3.3 Algorithm

Our algorithm partitions P recursively, using vertical cuts, as in Sect. 3.1. A cell
Ci is subdivided along a vertical cut ` through its median conflicting vertex, so the
vertex conflict lists of the new cells will be at most half the size of the conflict
lists of Ci. When the vertex conflict list of Ci is empty, we call the procedure

This is the Pre-Published Version 



10 Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron

Divide-Valley. If Ci is empty or is a wedge, then we stop subdividing Ci, and
it becomes a leaf cell.

In the induced subdivision, the descent paths cannot cross, and by construc-
tion they do not cross the vertical boundary edges. Each edge of S ′i may create at
most three such descent paths, so we create O(ci) such new descent paths. There
are also O(ci) new vertical edges, so we can update the doubly-connected edge
list in time O(ci log ci) by plane sweep. Using an additional O(vi log ci) time, we
can update the vertex conflict lists during this plane sweep. The face lists can
be updated in overall O(ci) time. It follows that:

Lemma 2. We can compute the subdivision of a non-empty cell Ci induced by
a line through its median conflicting vertex, and update our data structure ac-
cordingly, in O((ci + vi) log ci) time.

3.4 Analysis

Due to space limitation, we only give a sketch of proof for the running time of
our algorithm. By Lemma 2, we only need to bound the total size of the conflict
lists during the course of the algorithm. As there are only 2r motorcycle vertices,
and each cell contains at most half as many as its parent, the total size of the
vertex conflict lists is O(r log r).

We also show that the sum of the sizes of the edge conflict lists is O(n log r).
We split into two cases. First, consider the cells containing vertices of S ′. At each
subdivision, a vertex of S ′ in the cell being subdivided moves to a cell whose
vertex conflict list has at most half the size of its parent’s, so each vertex of S ′ is
contained in O(log r) cells throughout the algorithm. Hence we create O(n log r)
such cells. We then consider cells that overlap S ′, but none of its vertices. We
argue that these cells must be wedges, and that each edge of S ′ yields O(log r)
wedges.

Lemma 3. The vertical subdivision procedure completes in O(n(log n) log r) time.
The cells of the resulting subdivision are either empty cells, wedges, or do not
contain any motorcycle vertex in their interior. They are simply connected, and
the only reflex vertices on their boundaries are along valleys.

4 Cutting Between Valleys

In this section, we describe the second stage of the algorithm. Let Ci be a cell of
K(P) constructed by Divide-Vertical on which we call Divide-Valley. The
first stage of our algorithm ensures that Ci is convex and does not contain any
reflex vertex in its interior. Let Ri denote the set of valleys that conflict with
Ci, and let ri denote its cardinality. The extended valley e′ corresponding to a
valley e ∈ Ri is the segment obtained by extending e until it meets the boundary
∂Ci of the cell. As Ci does not contain any motorcycle vertex in its interior, the
extended valleys of Ci do not cross. So the extended valleys form an outerplanar
graph with outer face ∂Ci. (See Fig. 7.)

This is the Pre-Published Version 



A Faster Algorithm for Computing Straight Skeletons 11

CiCi

s

Ci

Fig. 7: (Left) The cell Ci and the conflicting valleys. (Middle) The extended
valleys, and a balanced cut. (Right) The triangulation and its dual graph.

If Ci conflicts with at least one valley, we first construct a balanced cut, which
is a chord s of ∂Ci such that there are at most 2ri/3 extended valleys on each side
of s. (See Fig. 7, middle.) The existence and the algorithm for computing s are
explained in the full version of this paper [5]. This balanced cut plays exactly the
same role as the vertical edges s1, . . . , sq along the cutting line that were used
in Divide-Vertical. So we insert s as a new boundary segment, we compute
its lifted version ŝ, and at each crossing between s and S ′, intersects the descent
paths as new boundary edges.

We repeat this process recursively, and we stop recursing whenever a cell
does not conflict with any valley. All the structural results in Sect. 3 still hold,
except that now a cell is sandwiched between two balanced cuts, which can have
arbitrary orientation, instead of the lines `−i and `+i .

So now we assume that we reach a leaf Ci, which does not conflict with any
valley. This cell Ci must be convex. As valleys are the only reflex edges of T , its
restriction Ĉi above Ci is convex. Hence, it is the lower envelope of the supporting
planes of its faces. These faces are obtained in O(ci) time from the face lists,
and the lower envelope can be computed in O(ci log ci) time algorithm using
any optimal 3D convex hull algorithm. We project Ĉi onto the xy-plane and we
obtain the restriction S ′i of S ′ to Ci.

The analysis is similar as for the first stage, except that now the valleys play
the role of the vertices of the motorcycle graphs. Our balanced cuts ensure that
after each subdivision, the number of conflicting valleys drops by a factor at
least 3/2, so the depth of recursion is still O(log r). Theorem 1 follows.

Acknowledgments. We thank the anonymous referees for their helpful com-
ments.

References

1. Aichholzer, O., Alberts, D., Aurenhammer, F., Gärtner, B.: A novel type of skeleton
for polygons. Journal of Universal Computer Science 1(12), 752–761 (1995)

This is the Pre-Published Version 



12 Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron

2. Barequet, G., Goodrich, M., Levi-Steiner, A., Steiner, D.: Straight-skeleton based
contour interpolation. Proceedings of the 14th annual ACM-SIAM symposium on
Discrete algorithms pp. 119–127 (2003)

3. Berg, M.d., Cheong, O., Kreveld, M.v., Overmars, M.: Computational Geometry:
Algorithms and Applications. Springer-Verlag (2008)

4. Bowers, J.: Computing the straight skeleton of a simple polygon from its motorcycle
graph in deterministic O(n log n) time. CoRR abs/1405.6260 (2014)

5. Cheng, S.W., Mencel, L., Vigneron, A.: A faster algorithm for computing straight
skeletons. CoRR abs/1405.4691 (2014)

6. Cheng, S.W., Vigneron, A.: Motorcycle graphs and straight skeletons. Algorithmica
47(2), 159–182 (2007)

7. Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon
in linear time. Discrete and Computational Geometry 21(3), 405–420 (1999)

8. Cloppet, F., Oliva, J., Stamon, G.: Angular bisector network, a simplified general-
ized voronoi diagram: Application to processing complex intersections in biomedi-
cal images. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1),
120–128 (2000)

9. Coquillart, S., Oliva, J., Perrin, M.: 3d reconstruction of complex polyhedral shapes
from contours using a simplified generalized voronoi diagram. Computer Graphics
Forum 15(3), 397–408 (1996)

10. Day, A., Laycock, R.: Automatically generating large urban environments based
on the footprint data of buildings. Proceedings of the 8th ACM symposium on
Solid Modeling and Applications pp. 346–351 (2003)

11. Demaine, E.D., Demaine, M.L., Lubiw, A.: Folding and cutting paper. Revised
Papers from the Japan Conference on Discrete and Computational Geometry pp.
104–117 (1998)

12. Demaine, E.D., Demaine, M.L., Lubiw, A.: Folding and one straight cut suffice.
Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms
pp. 891–892 (1999)

13. Demaine, E.D., Demaine, M.L., Mitchell, J.S.B.: Folding flat silhouettes and wrap-
ping polyhedral packages: New results in computational origami. Proceedings of the
15th Annual ACM Symposium on Computational Geometry pp. 105–114 (1999)

14. Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool: Appli-
cations of a data structure for finding pairwise interactions. Discrete and Compu-
tational Geometry 22(4), 569–592 (1999)

15. Felkel, P., Š. Obdržálek: Straight skeleton implementation. Proceedings of the 14th
Spring Conference on Computer Graphics pp. 210–218 (1998)

16. Held, M., Huber, S.: Theoretical and practical results on straight skeletons of
planar straight-line graphs. Proceedings of the 27th Symposium on Computational
Geometry pp. 171–178 (2011)

17. Held, M., Huber, S.: A fast straight-skeleton algorithm based on generalized motor-
cycle graphs. International Journal of Computational Geometry and Applications
22(5), 471–498 (2012)

18. Hershberger, J.: Finding the upper envelope of n line segments in O(n log n) time.
Information Processing Letters 33(4), 169–174 (1989)

19. Kelly, T., Wonka, P.: Interactive architectural modeling with procedural extrusions.
ACM Transactions on Graphics 30(2), 14:1–14:15 (2011)

20. von Peschka, G.: Kotirte Ebenen: Kotirte Projektionen und deren Anwendung;
Vorträge. Brno: Buschak and Irrgang (1877)

21. Vigneron, A., Yan, L.: A faster algorithm for computing motorcycle graphs. Pro-
ceedings of the 29th Symposium on Computational Geometry pp. 17–26 (2013)

This is the Pre-Published Version 


