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Abstract. We consider the problem of multiplying sparse matrices (over
a semiring) where the number of non-zero entries is larger than main
memory. In the classical paper of Hong and Kung (STOC ’81) it was

shown that to compute a product of dense U×U matrices, Θ
(

U3/(B
√
M)

)

I/Os are necessary and sufficient in the I/O model with internal memory
size M and memory block size B.

In this paper we generalize the upper and lower bounds of Hong and
Kung to the sparse case. Our bounds depend of the numberN = nnz(A)+
nnz(C) of nonzero entries in A and C, as well as the number Z =
nnz(AC) of nonzero entries in AC.

We show that AC can be computed using Õ

(

N

B
min

(

√

Z

M
, N

M

))

I/Os,

with high probability. This is tight (up to polylogarithmic factors) when
only semiring operations are allowed, even for dense rectangular matrices:

We show a lower bound of Ω

(

N

B
min

(

√

Z

M
, N

M

))

I/Os.

While our lower bound uses fairly standard techniques, the upper bound
makes use of “compressed matrix multiplication” sketches, which is new
in the context of I/O-efficient algorithms, and a new matrix product size
estimation technique that avoids the “no cancellation” assumption.

1 Introduction

In this paper we consider the fundamental problem of multiplying matrices that
are sparse, that is, the number of nonzero entries in the input matrices (but
not necessarily the output matrix) is much smaller than the number of entries.
Matrix multiplication is a fundamental operation in computer science and math-
ematics, due to the wide range of applications and reductions to it — e.g. com-
puting the determinant and inverse of a matrix, or Gaussian elimination. Ma-
trix multiplication has also seen lots of use in non-obvious applications such as
bioinformatics [24], computing matchings [22,18] and algebraic reasoning about
graphs, e.g. cycle counting [2,3].

⋆ This work is supported by the Danish National Research Foundation under the
Sapere Aude program.
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Matrix multiplication in the general case has been widely applied and studied
in a pure math context for decades. In an algorithmic context matrix multiplica-
tion is known to be computable using O(nω) ring operations, for some constant
ω between 2 and 3. The first improvement over the trivial cubic algorithm was
achieved in 1969 in the seminal work of Strassen [23] showing ω ≤ log2 7 and
most recently Vassilevska Williams [26] improved this to ω < 2.373.

Matrix multiplication over a semiring, where additive inverses cannot be used,
is better understood. In the I/O model introduced by Aggarwal and Vitter [1]
the optimal matrix multiplication algorithm for the dense case already existed
(see Section 1.2) and since then sparse-dense and sparse-sparse combinations of
vector and matrix products have been studied, e.g. in [6,12,19].

The main contribution of this paper is a tight bound for matrix multiplication
over a semiring in terms of the number of nonzero entries in the input and
output matrices, generalizing the classical result of Hong and Kung on dense
matrices [14] to the sparse case.

1.1 Preliminaries

Let A ∈ RU×U and C ∈ RU×U be matrices of U rows and U columns and
let every entry [A]i,j , [C]i′,j′ ∈ R for semiring R. Further for matrix A let Ai∗
denote row i of A and let A∗j denote column j of A. The matrix product AC,
where each entry [AC]i,j , i, j ∈ [U ] is given as [AC]i,j =

∑

k[A]i,k[C]k,j . A
nonzero term [A]i,k[C]k,j is referred to as an elementary product. We say that
there is no cancellation of terms when [AC]i,j = 0 implies that [A]i,k[C]k,j = 0
for all k. For sparse semiring matrix multiplication, the number of entry pairs
with nonzero product measures the number of operations performed up to a
constant factor assuming optimal representation of the matrices. Specifically, let
∑n

k=1 |{j | [A]j,k 6= 0}||{i | [C]k,i 6= 0}| be the number of such nonzero pairs of
matrix entries. Finally let nnz(A) = |{i, j | [A]i,j 6= 0}| denote the number of
nonzero entries of matrix A. When no explicit base is stated, logarithms in this
paper are base 2.

External memory model. This model of computation [1] is an abstraction
of a two-level memory hierachy: We have an internal memory holding M data
items (“words”) and a disk of infinite size holding the remaining data. Transfers
between internal memory and disk happen in blocks of B words, and a word
must be in internal memory to be manipulated. The cost of an algorithm in this
model is the number of block transfers (I/Os) done by the algorithm. We will
use sort(n) = O((n/B) logM/B(n/B)) as shorthand for the sorting complexity

of n data items in the external memory model and Õ(·)-notation to suppress
polylogarithmic factor in input size N and matrix dimension U .

We assume that a word is big enough to hold a matrix element from a semiring
as well as the matrix coordiantes of that element, i.e., a block holds B matrix
elements. We restrict attention to algorithms that work with semiring elements
as an abstract type, and can only copy them, and combine them using semiring
operations. We refer to this restriction as the semiring I/O model. Our upper



bound uses a slight extension of this model in which equality check is allowed,
which allows us to take advantage of cancellations, i.e., inner products in the
matrix product that are zero in spite of nonzero elementary products.

The problem we solve. Given matrices A ∈ RU×U and C ∈ RU×U con-
taining nnz(A) and nnz(C) non-zero semiring elements, respectively, we wish to
output a sparse representation of the matrix product AC in the external mem-
ory model. We are dealing with sparse matrices represented as a list of tuples
of the form (i, j, [A]ij), where [A]ij ∈ R is a (nonzero) matrix entry. To produce
output we must call a function emit(e) for every nonzero entry (i, j, (AC)ij) of
AC. We only allow emit(·) to be called once on each output element, but impose
no particular order on the sequence of outputs.

We note that the algorithm could be altered to write the entire output before
termination by, instead of calling emit(·), simply writing the output element to
a disk buffer, outputting all nnz(AC) elements using O(nnz(AC)/B) additional
I/Os. However, in some applications such as database systems (see [5]) there
may not be a need to materialize the matrix product on disk, so we prefer the
more general method of generating output.

1.2 Related work

The external memory model was introduced by Aggarwal and Vitter in their
seminal paper [1], where they provide tight bounds for a collection of central
problems.

An I/O-optimal matrix multiplication algorithm for dense semiring matrices
was achieved by Hong and Kung [14]: Group the matrices into k

√
M×k

√
M sub-

matrices where constant k is picked such that three
√
M ×

√
M matrices fit into

internal memory. This reduces the problem to O((U3/
√
M)3) matrix products

that fit in main memory, costing O(M/B) I/Os each, and hence O(U3/B
√
M)

in total [10]. Hong and Kung also provided a tight lower bound Ω(U3/B
√
M)

that holds for algorithms that work over a semiring. (It does not apply to algo-
rithms that make use of subtraction, such as fast matrix multiplication meth-
ods, for which the blocking method described above yields an I/O complexity of
Uω/(Mω/2−1B) I/Os.)

For sparse matrix multiplication the previously best upper bound [5],
shown for Boolean matrix products but claimed for any semiring, is
Õ(N

√

nnz(AC)/BM1/8).

It seems that this bound requires “no cancellation of terms” (or more specif-
ically, the output sensitivity is with respect to the number of output entries
that have a nonzero elementary product). Our new upper bound of this paper
improves upon this: The Monte Carlo algorithm of Theorem 1 has strictly lower
I/O complexity for the entire parameter space and makes no assumptions about
cancellation.

An important subroutine in our algorithm is dense-vector sparse matrix mul-
tiplication: For a vector y and sparse matrix S we can compute their product



using optimal Õ((nnz(S)+nnz(y))/B) I/Os [6] - this holds for arbitrary layouts
of the vector and matrix on disk.

Our algorithm has an interesting similarity to Williams and Yu’s recent out-
put sensitive matrix multiplication algorithm [25, Section 6]. Their algorithm
works by splitting the matrix product into 4 submatrices of equal dimension,
running a randomized test to determine which of these subproblems contain a
nonzero entry. Recursing on the non-zero submatrices, they arrive at an output
sensitive algorithm.We perform a similar recursion, but the splitting is computed
differently in order to recurse in a balanced manner, such that each subprob-
lem at a given level of the recursion outputs approximately the same number of
entries in the matrix product.

Size estimation of the number of nonzeros in matrix products was used by
Cohen [9,8] to compute the order of multiplying several matrices to minimize the
total number of operations. For constant error probability this algorithm uses
O(ε−2N) operations in the RAM model to perform the size estimation. For ε >
4/ nnz(AC)1/4 Amossen et al [4] improved the running time to be expected O(N)
in the RAM model and expected O(sort(N)) in the I/O model. Contrary to the
approaches of [4,9,8] our new size estimation algorithm presented in Section 2 is
able to deal with cancellation of terms, and it uses Õ(ε−3N/B) I/Os. Informally,
the main idea of our size estimation algorithm is to multiply a sequence of vectors
x with certain properties onto AC but in the computationally inexpensive order
(xA)B, in order to produce linear sketches of the rows (columns) of AC.

1.3 New results

We present a new upper bound in the I/O model for sparse matrix multiplication
over semirings. Our I/O complexity is at least a factor of roughly M3/8 better
than that of [5]. We show the following theorem:

Theorem 1. Let A ∈ RU×U and C ∈ RU×U be matrices with entries from a
semiring R, and let N = nnz(A)+nnz(C), Z = nnz(AC). There exist algorithms
(a) and (b) such that:

(a) emits the set of nonzero entries of AC with probability at least 1−1/U , using

Õ
(

N
√
Z/(B

√
M)
)

I/Os.

(b) emits the set of nonzero entries of AC, and uses O
(

N2/(MB)
)

I/Os.

For every A and C, using Õ (N/B) I/Os we can determine with probability at
least 1− 1/U if one of the two I/O bounds is significantly lower, i.e., distinguish
between N

√
Z/(B

√
M) > 2N2/(MB) and 2N

√
Z/(B

√
M) < N2/(MB).

The above theorem makes no assumptions about cancellation of terms. In par-
ticular, nnz(AC) can be smaller than the number of output entries that have
nonzero elementary products.

Our second main contribution is a new lower bound on sparse matrix multi-
plication in the semiring I/O model.



Theorem 2. For all positive integers N and Z < N2 there exist matrices A
and C with nnz(A), nnz(C) ≤ N , nnz(AC) ≤ Z, such that computing AC in the

semiring I/O model requires Ω
(

min
(

N2

MB , N
√
Z√

MB

))

I/Os.

Since we can determine and run the algorithm satisfying the minimum complex-
ity of the lower bound, our bounds are tight.

Paper structure. Section 2 describes a new size estimation algorithm which
we will use as a subprocedure for our sparse matrix multiplication algorithm.
The new size estimation algorithm may be of independent interest since to the
knowledge of the authors there are no published size estimation procedures that
handle cancellation of terms. Section 3 first describes a simple output insensi-
tive algorithm in Section 3.1, algorithm (b) of Theorem 1. Then we describe
how algorithm (a) of Theorem 1 works: In Section 3.4 we describe how to di-
vide the sparse matrix product into small enough subproblems (with respect to
output size), and Section 3.3 desribes how a version of Pagh’s “compressed ma-
trix multiplication” algorithm yields an I/O efficient algorithm for subproblems
with a small output. Finally in Section 4 we show the new tight lower bound of
Theorem 2.

2 Matrix output size estimation

We present a method to estimate column/row sizes of a matrix product AC,
represented as a sparse matrix. In particular, for a column C∗k (or analogously
row Ak∗) we are interested in estimating the number of nonzeros nnz(A[C]∗k)
(nnz([A]k∗B)). We note that there are no assumptions about (absence of) cancel-
lation of terms in the following. We show the existence of the following algorithm.

Lemma 1. Let A ∈ RU×U and C ∈ RU×U be matrices with entries from semir-
ing R, N = nnz(A) + nnz(C) and let 0 < ε, δ ≤ 1. We can compute estimates
z1, . . . , zk using Õ(ε−3N/B) I/Os and O(ε−3N log(U/δ) logU) RAM operations
such that with probability at least 1− δ it holds that (1− ε) nnz([AC]∗k) ≤ zk ≤
(1 + ε) nnz([AC]∗k) for all 1 ≤ k ≤ U .

We note that Lemma 1 by symmetry can give the same guarantees for rows
of the matrix product, which is done analogously by applying the algorithm to
the product (AC)T = CTAT . Further, from Lemma 1 we have, following from
combining of all column estimates, an estimate of nnz(AC).

Corollary 1. Let A ∈ RU×U and C ∈ RU×U be matrices with entries from
semiring R, N = nnz(A) + nnz(C) and let 0 < ε, δ ≤ 1. We can compute Ẑ in
Õ(ε−3N/B) I/Os and O(ε−3N log(U/δ) logU) RAM operations such that with
probability at least 1− δ it holds that (1− ε) nnz(AC) ≤ Ẑ ≤ (1 + ε) nnz(AC).

At a high level, the algorithm is similar in spirit to Cohen [9,8], but uses linear
F0 sketches (see e.g. [11,15]) that serve the purpose of capturing cancellation of
terms.



We will make use of a well-known F0-sketching method [11,16], where F0(f)
denotes the number of non-zero entries in a vector f . Let S be a data stream of
items of the form ((i, j), r), where (i, j) ∈ U × U and r ∈ R. The stream defines
a vector indexed by U × U (which can also be thought of as a matrix), where
entry (i, j) is the sum of all ring elements r that occurred with index (i, j) in
the stream.

For a matrix S ∈ RU×U the number of distinct indices is the sum of distinct
indices over all column vectors F0(S) =

∑

i∈[U ] F0(Si∗). One can compute in

spaceO(ε−3 logn log δ−1) [11,16] a linear sketch over x that can output a number
ẑ, where (1− ε)F0 ≤ ẑ ≤ (1 + ε)F0 with constant probability.

High-level algorithm description. We compute a linear sketch F followed by the
matrix product v = FAC. From v for a given T we can distinguish between a
column having more than (1 + ε)T and less than (1 − ε)T nonzero entries - we
repeat this procedure for suitable values of T to achieve the final estimate. We
use the following distinguishability result:

Fact 3 ([16], Section 2.1) There exists a projection matrix M ∈ {0, 1}n×d such
that for each frequency vector f ∈ R1×n we can be estimate F0(f) from fM .
In particular, for fixed T ′ > 0, 0 < ε′, δ′ ≤ 1 with probability 1 − δ′ we can
distinguish the cases F0(f) > (1 + ε′)T ′ and F0(f) < (1 − ε′)T ′ using space
d = O(ε′−2 log δ′−1).

We will apply this distinguishability sketch to the columns of the product AC,
since F0(AC) > (1 + ε)T implies nnz(AC) > (1 + ε)T and analogously for the
second case. This follows trivially from the definition of F0 and the number of
nonzeroes in a matrix product. From Fact 3 we have a sketch F ∈ {0, 1}d×U

which multiplied with a matrix S ∈ RU×U we can for the columns [FS]∗k dis-
tinguish nnz(S∗k) > (1 + ε)T from nnz(S∗k) < (1− ε)T with probability 1− δ.

Proof. (Corollary 1) Let F ∈ {0, 1}d×U be a F0-distinguishability sketch as
described in Fact 3. To ensure that for every of the U columns in v = FAC
we can distinguish the two cases with probability at least 1 − δ it is sufficient
to invoke the algorithm from Fact 3 with δ′ = δ/U . By the union bound over
the error probabilities we have

∑

1≤i≤U δ/U = δ. By linearity of F we have that
from v we can for all columns k ∈ [U ] distinguish the cases [AC]∗k < (1 − ε)T
and [AC]∗k > (1 + ε)T .

Also by linearity, the order of operations in the computation of v is v =
(FA)C, hence the computation of v can be seen as 2d dense-vector sparse-matrix
multiplications.

For dense vector y1×U and sparse matrix S ∈ RU×U we can compute yS in
O((nnz(S)/B) logM/B(U/M)) I/Os [6]. LettingN = nnz(A)+nnz(C) computing
v for a value of T has I/O complexity

O(2d(N/B) logM/B(U/M) = O(ε−2(N/B) logM/B(U/M) log(U/δ)

= Õ(ε−2N/B). (1)



We note that for sparse matrices this bound is Õ(sort(U)). Analogously, the num-
ber of RAM operations needed to compute v for a specific T is O(ε−2N log(U/δ)).

Since for a given T we can now using I/Os given in (1) distinguish [AC]∗k <
(1−ε)T and [AC]∗k > (1+ε)T we simply repeat this procedure for O(ε−1 logU)
values T = 1, (1 + ε), (1 + ε)2, . . . , O(U), which yields a 1 ± ε estimate of the
number of nonzeroes in each column, from which we have the desired estimate
of the total number of nonzeroes.

We note that the algorithm of Corollary 1 can be obtained using any linear
F0 sketch in I/O complexity O(ξ(N/B) logM/B(U/M)), where ξ is the space
complexity of the sketch used.

3 Cache-aware upper bound

As in the previous section let A ∈ RU×U and C ∈ RU×U be matrices with entries
from a semiring R, and let N = nnz(A) + nnz(C) be the input size.

3.1 Output insensitive algorithm

We first describe algorithm (a) of Theorem 1, which is insensitive to the number
of output entries nnz(AC). It works as follows: First put the entries of C in
column-major order by lexicographic sorting. For every row ai of A with more
than M/2 nonzeros, compute the vector-matrix product aiC in time Õ(N/B)
using the algorithm of [6]. There can be at most 2N/M such rows, so the total
time spent on this is Õ(N2/(MB)). The remaining rows of A are then gathered
in groups with between M/2 and M nonzero entries per group. In a single scan
of C (using column-major order) we can compute the product of each such row
with the matrix C. The number of I/Os is O(N/B) for each of the at most
2N/M groups, so the total complexity is Õ(N2/(MB)).

3.2 Monte Carlo algorithm overview

We next describe algorithm (b) of Theorem 1 The algorithm works by first per-
forming a step of color coding, the purpose of which is to split the matrix product
into submatrices, each of which can be computed efficiently. Roughly, the idea
is to color the rows of A and columns of C, forming submatrices A1, A2, . . . and
C1, C2, . . . corresponding to each color, such that every matrix product AiCj has
roughlyM/ logU nonzero elements. Then, a “compressed” matrix multiplication
algorithm (described by Lemma 2) is used to compute every product AiCj by
a single scan over the matrices Ai and Cj . The number c of colors needed to
achieve this, to be specified later, depends on an estimate of nnz(AC), found
using Corollary 1. It turns out to simplify the algorithm if we deviate slightly
from the above coloring, by using different colorings of the rows of C for each

Ai. That is, we will work with c different decompositions C
(i)
1 , C

(i)
2 , . . . of C,

and compute products of the form AiC
(i)
j . Also, there might be rows of A and



columns of C that we cannot color because they generate too many entries in the
output. However, it turns out that we can afford to handle such rows/columns
in a direct way using vector-matrix multiplication.

3.3 Compressed matrix multiplication in the I/O model

Let γ > 0 be a suitably small constant, and define r = 4γM/ logU . We now
describe an I/O-efficient algorithm for matrix products AC with nnz(AC) ≤
γM/ logU = r/4 nonzeros. If A is stored in column-major order and C is stored
in row-major order, the algorithm makes just a single scan over the matrices.

The algorithm is a variation of the one found in [19], adapted to the semigroup
I/O model. Specifically, for some constant ℓ and t = 1, . . . , ℓ logU let ht, h

′
t :

[U ] → [r] be pairwise independent hash functions. The algorithm computes the
following ℓ logU polynomials of degree at most 2r:

pt(x) =

U
∑

k=1

(

U
∑

i=1

Ai,kx
ht(i)

)





U
∑

j=1

Ck,jx
h′

t
(j)



 .

It is not hard to see that the polynomial
∑U

i=1 Ai,kx
ht(i) can be computed in

a single scan over column i of A, using space r. Similarly, we can compute the
polynomial

∑U
j=1 Ck,jx

h′

t
(j) in space r by scanning row j of C. As soon as both

polynomials have been computed, we multiply them and add the result to the
sum of products that will eventually be equal to pt(x). This requires additional
space 2r, for a total space usage of 4r.

Though a computationally less expensive approach is described in [19], we
present a simple method that (without using any I/Os) uses the polynomials
pt(x), t = 1, . . . , ℓ logU , to compute the set of entries in AC with probability
1−U−3. For every i and j, to compute the value of [AC]i,j consider the coefficient

of xht(i)+h′

t
(j) in pt, for t = 1, . . . , ℓ logU . For suitably chosen c, with probability

1 − U−5 the value [AC]i,j is found in the majority of these coefficients. The
majority coefficient can be computed using just equality checks among semigroup
elements [7]. The analysis in [19] gives us, for a suitable choice of γ and ℓ, the
following:

Lemma 2. Suppose matrix A is stored in column-major order, and C is stored
in row-major order. There exists an algorithm in the semiring I/O model aug-
mented with equality test, and an absolute constant γ > 0, such that if nnz(AC) <
γM/ logU the algorithm outputs the nonzero entries of AC with probability
1− U−3, using just a single scan over the input matrices.

3.4 Computing a balanced coloring

We wish to assign every row Ak∗ and column C∗k a color from [c]. Let color set
Si contain rows Ak∗ that are assigned color i and for such a color i assigned to

rows of ofA let color set S
(i)
j contain columns C∗k that are assigned color j. Also,



let A|Si be the input matrix A restricted to contain only elements in rows from

Si (and analogously for C and S
(i)
j ).

The goal of the coloring step is to assign the colors such that for every pair of

color sets (Si, S
(i)
j ), 1 ≤ i, j ≤ c it holds that nnz((A|Si)(C|S(i)

j )) < γM/ logU .
This can be seen as coloring the rows of A once and the columns of C c times.

Lemma 3. Let A ∈ RU×U and C ∈ RU×U be matrices with N = nnz(A) +
nnz(C) nonzero entries.

Using Õ

(

N
√

nnz(AC)

B
√
M

)

I/Os a coloring with c =
√

nnz(AC) logU
M +O(1) colors can

be computed that assigns a color to rows of A and for each such color i, assigns
colors to columns of C such that:

1. For every i, j ∈ [c] it holds that nnz
(

(A|Si)(C|S(i)
j )
)

< M/ logU .

2. Rows from A and columns form C that are not in some color sets Si and

S
(i)
j has had their nonzero output entries emitted.

Proof. At a high level, the coloring will be computed by recursively splitting
the matrix rows in two disjoint parts to form matrices A1 and A2 where A1

contains the nonzeros from the first t− 1 rows, for some t, and A2 contains the
nonzeros from the last U − t rows. Row number t, the “splitting row”, will be
removed from consideration by generating the corresponding part of the output
using I/O-efficient vector-matrix multiplication. We wish to choose t such that:

1. nnz(A1C) ∈
[

(1 − log−1 U) nnz(AC)/2; (1 + log−1 U) nnz(AC)/2
]

.

2. nnz(A2C) ∈
[

(1 − log−1 U) nnz(AC)/2; (1 + log−1 U) nnz(AC)/2
]

.

And after log c+ O(1) recursive levels of such splits, we will have O(c) disjoint
sets of rows from A. For each such set we then compute disjoint column sets
of C in the same manner, and we argue below that this gives us subproblems
with output size nnz(AC)/c2 = M/ logU , where each subproblem corresponds
exactly to a pair of color sets as described above.

In order to compute the row number t around which to perform the split,
we invoke the estimation algorithm from Corollary 1 with ε = log−1 U such that
for every row in [AC]k∗ we have access to an estimate ẑk where it holds with
probability at least 1 − U−l (for fixed l > 0 chosen to get sufficiently low error
probability):

ẑk ∈
[

(1 − log−1 U) nnz([AC]k∗)/2; (1 + log−1 U) nnz([AC]k∗)/2
]

. (2)

In particular for any set of rows r we have that

(1− log−1 U) nnz

(

∑

i∈r

[AC]i∗

)

≤
∑

i∈r

ẑi ≤ (1− log−1 U) nnz

(

∑

i∈r

[AC]i∗

)

. (3)

We will now argue that if we can create a split of the rows such that (1) and
(2) hold, then when the splitting procedure terminates after log c+O(1) recursive



levels, we have that for each pair of colors it is the case that (A|Si)(C|S′
j) <

M/ logN . Consider the case where each split is done with the maximum positive
error possible, i.e., on recursive level q we have divided the nnz(AC) nonzeros
into subproblems where each are of size at most nnz(AC)(1/2 + 1/(2 logU))q.

Remember that c =
√

nnz(AC) logN
M is the number of colors. After log c + O(1)

recursive levels we have subproblem size:

(

nnz(AC)

2
+

nnz(AC)

2 logU

)log c2

= nnz(AC)2− log c2
(

1 +
1

logU

)log c2

≤ nnz(AC)2− log c2e
log c

2

log U (4)

≤ nnz(AC)O(1)/c2 (5)

= O(M/ logU) (6)

The main observation to see that we get the right subproblem size as in (6) is
that for each recursion we decrease the output size by a factor Ω(c). For (4) we
use (1 + 1/x)y ≤ ey/x and (5) follows from nnz(AC) = NO(1). The analysis for
the case where each split is done with the maximum negative error possible is
analogous and thus omitted.

We will now argue that with access to the ẑi estimates as in (2) we can always
construct a split such that (1) and (2) hold. Let partitions 1 and 2 be denoted
P1 and P2 and ẑ =

∑

i ẑi be the estimate of the total number of outputs for the
current subproblem. Create P1 by examining rows [A]k∗ one at a time. If the
estimated number of nonzeros of P1 ∪ [A]k∗ is less than z/2 then add [A]k∗ to
P1. Otherwise perform dense-vector sparse-matrix multiplication [A]k∗C using
Õ(nnz(C)/B) I/Os [6]and emit every nonzero of that product - this eliminates
the row vector [A]k∗ from matrix A as all outputs generated by row [A]k∗ has
now been emitted. Because of (3) we have that the remaining rows of A can
now be placed in partition P2 and the sum of their outputs will be at most
(1 + log−1 U) nnz(AC)/2. The procedure and analysis is equivalent for the case
of columns. From (6) we had that even with splits of nnz(AC)(1/2 + log(U)/2)
nonzeros then the subproblem size is the desired O(M/ logU) after all log c2

splits are done.
In terms of I/O complexity consider first the coloring of all rows in A. First

we perform the size estimates of Corollary 1 in Õ(N/B) such that we know
where to split. Then we perform c splits and each split also outputs the output
entries for a specific row using dense-vector sparse-matrix multiplication, hence
this split takes c nnz(C) = Õ (cN/B) I/Os. Finally for each of the c sets of
rows of A we partition columns of B in the same manner, first by invoking c size
estimations taking Õ(N/B) due to the sum of the nonzeros in the c subproblems
being at most N . Then for each of the c row sets we perform c splits and output
a column from C. This step takes time Õ(cN/B) and hence in total we use

Õ(3cN/B + 2N/B) = Õ

(

N
√

nnz(AC)

B
√
M

)

.



3.5 I/O Complexity Analysis

Next, we will use Lemma 3 for the algorithm that shows part (b) of Theorem 1.
We summarize the steps taken and their cost in the external memory model.

Proof. (Theorem 1, part (b)) The algorithm first estimates nnz(AC) with pa-
rameters ε = 1/ logN and δ = 1/U which by Corollary 1 uses Õ(N/B) I/Os. We
then perform the coloring, outputting some entries of AC and dividing the re-

maining entries into c2 balanced sets for c =
√

nnz(AC) logU
M +O(1). By Lemma 3

this uses Õ

(

N
√

nnz(AC)

B
√
M

)

I/Os. Finally we invoke the compressed matrix mul-

tiplication algorithm from Lemma 2 on each subproblem. This is possible since
each subproblem has at most γM/ logU nonzeros entries in the output. The to-
tal cost of this is O(cN/B) I/Os, since each nonzero entry in A and C is part of
at most c products, and the cost of each product is simply the cost of scanning
the input.

4 Lower bound

Our lower bound generalizes that of Hong and Kung [14] on the I/O complexity
of dense matrix multiplication. We extend the technique of [14] while taking
inspiration from lower bounds in [13,21,20]. The closest previous work is the
lower bound in [20] on the I/O complexity of triangle enumeration in a graph,
but new considerations are needed due to the fact that cancellations can occur.

Like the lower bound of Hong and Kung [14], our lower bound holds in a
semiring model where:

– A memory block holds up to B matrix entries (from the semiring), and
internal memory can hold M/B memory blocks.

– Semiring elements can be multiplied and added, resulting in new semiring
elements.

– No other operations on semiring elements (e.g. division, subtraction, or
equality test) are allowed.

The model allows us to store sparse matrices by listing just non-zero matrix
entries and their coordinates. We note that our algorithm respects the constraints
of the semiring model with one small exception: It uses equality checks among
semiring elements.

We require the algorithm to work for every semiring, and in particular over
fields of infinite size such as the real numbers, and for arbitrary values of nonzero
entries in A and C. Since only addition and multiplication are allowed, we can
consider each output value as a polynomial over nonzero entries of the input
matrices. By the Schwartz-Zippel theorem [17, Theorem 7.2] we know that two
polynomials agree on all inputs if and only if they are identical. Since we are
working in the semiring model, the only way to get the term Ai,kCk,j in an
output polynomial is to directly multiply these input entries. That means that



to compute an output entry [AC]i,j we need to compute a polynomial that is
identical to the sum of elementary products

∑

k Ai,kCk,j . It is possible that
the computation of this polynomial involves other nonzero terms, but these are
required to cancel out.

We now argue that for every N and Z there exist matrices A and C with
nnz(A)+nnz(C) = Θ(N) and nnz(AC) = Θ(Z), for which every execution of an

external memory algorithm in the semiring model must useΩ
(

N
B min

(
√

Z
M , N

M

))

I/Os. Our lower bound holds for the best possible execution, i.e., even if the al-
gorithm has been tailored to the structure of the input matrices.

The hard instance for the lower bound is a dense matrix product, which
maximizes the number of elementary products. In particular, since we ignore
constant factors we may assume that

√
Z and N/

√
Z are integers. Let A be a

(
√
Z)-by-(N/

√
Z) dense matrix, and let C be a (N/

√
Z)-by-(

√
Z) dense matrix.

Without loss of generality, every semiring element that is stored during the
computation is either: 1) An input entry, or 2) Part of a sum that will eventually
be emitted as the value of a unique nonzero element [AC]i,j .

This is because these are the only values that can be used to compute an
output entry (making use of the fact that additive and multiplicative inverses
cannot be computed). This implies that every output entry can be traced through
the computation, and it is possible to pinpoint the time in the execution where
an elementary product is computed and stored in internal memory.

We use the following lemma from [13]:

Lemma 4. In space M the number of elementary products that can be computed
and stored is at most M3/2.

Following [20], observe that any execution of an I/O efficient algorithm can
be split into phases of M/B I/Os. By doubling the memory size to 2M we find
an equivalent execution where every read I/O happens at the beginning of the
phase (before any processing takes place), and every write I/O happens at the
end of the phase. For every phase we can therefore identify the set of at most
2M input and output entries that involved in the phase.

If all values needed for emitting a particular output entry are present in a
phase there may not be any storage location that can be associated with it. We
first account for such direct outputs: Each direct output requires two vectors
of length N/

√
Z to be stored in main memory. In each phase we can store at

most M
√
Z/N such vectors, resulting in at most M2Z/N2 output pairs. So the

number of phases needed to emit, say, Z/2 outputs would be at least (N/M)2,
using N2/(MB) I/Os. This means that to output a substantial portion of AC
in this way we need at least this number of I/Os.

Next, we focus on output entries for which an elementary product is written
to disk in some phase. By Lemma 4 the number of elementary products computed
and stored is at most (2M)3/2. If the total number of elementary products is
p then we need at least p/(2M)3/2 phases of M/B I/Os each. Considering Z/2
output entries in our hard instance, these contain N

√
Z/2 elementary products.



Since Z/2 outputs are needed either in the direct or the indirect way, the
number of I/Os needed becomes the minimum of the two lower bounds we get
Theorem 2.
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