Skip to main content

Practical Instantaneous Frequency Analysis Experiments

  • Conference paper
  • First Online:
E-Business and Telecommunications (ICETE 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 456))

Included in the following conference series:

  • 884 Accesses

Abstract

This paper investigated the use of instantaneous frequency (IF) instead of power amplitude and power spectrum in side-channel analysis. By opposition to the constant frequency used in Fourier Transform, instantaneous frequency reflects local phase differences and allows detecting frequency variations. These variations reflect the processed binary data and are hence cryptanalytically useful. IF exploits the fact that after higher power drops more time is required to restore power back to its nominal value. Whilst our experiments reveal IF does not bring specific benefits over usual power attacks when applied to unprotected designs, IF allows to obtain much better results in the presence of amplitude modification countermeasures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The mean \(m\) and the standard deviation \(\sigma \) were arbitrary set to \(m=40\) ns and \(\sigma = 5\) ns in our experiment.

References

  1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatg, P.: The EM Side-Channel(s). In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Baddam, K., Zwolinski, M.: Evaluation of dynamic voltage and frequency scaling as a differential power analysis countermeasure. In: Proceedings of the 20-th International Conference on VLSI Design Held Jointly with 6-th International Conference: Embedded Systems, VLSID ’07, pp. 854–862. IEEE Computer Society (2007)

    Google Scholar 

  3. Battista, B., Knapp, C., McGee, T., Goebel, V.: Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. In: Geophysics, vol. 72, pp. H29–H37. SEG (2007)

    Google Scholar 

  4. Battista, B., Knapp, C., McGee, T., Goebel, V.: Matlab program demonstrating performing the empirical mode decomposition and Hilbert-Huang transform on seismic reflection data, August 2012. http://software.seg.org/2007/0003/mat/emd.zip

  5. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973). IBM Corp.

    Article  MATH  Google Scholar 

  6. Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal. I. fundamentals. Proc. IEEE 80, 520–538 (1992)

    Article  Google Scholar 

  7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Gebotys, C.H., Ho, S., Tiu, C.C.: EM analysis of Rijndael and ECC on a wireless Java-based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 250–264. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Gebotys, C., Tiu, C., Chen, X.: A countermeasure for EM attack of a wireless PDA. In: International Conference on Information Technology: Coding and Computing, 2005, ITCC 2005, vol. 1, pp. 544–549, April 2005

    Google Scholar 

  10. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis - A Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Huang, N., Shen, S.: The Hilbert-Huang Transform and its Applications. World Scientific Publishing Company, Singapore (2005)

    Book  Google Scholar 

  12. Huang, N., Shen, Z., Long, S., Wu, M., Shih, S., Zheng, Q., Tung, C., Liu, H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaslovsky, D., Meyer, F.: Noise Corruption of Empirical Mode Decomposition and Its Effect on Instantaneous Frequency. ArXiv e-prints, August 2010. http://arxiv.org/pdf/1008.4176v1

  14. Keyes, R.: Physical limits in digital electronics. IEEE Proc. 63, 740–767 (1975)

    Article  Google Scholar 

  15. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  16. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Krieg, A., Grinschgl, J., Steger, C., Weiss, R., Haid, J.: A side channel attack countermeasure using system-on-chip power profile scrambling. In: IEEE International On-Line Testing Symposium, pp. 222–227. IEEE Computer Society (2011)

    Google Scholar 

  18. Luo, Q.: Enhance multi-bit spectral analysis on hiding in temporal dimension. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 13–23. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Mateos, E., Gebotys, C.: Side channel analysis using giant magneto-resistive (GMR) sensors. In: 2-nd International Workshop on Constructive Side-Channel Analysis and Secure Design - COSADE 2011, pp. 42–49, Feburary 2011

    Google Scholar 

  20. Mead, C., Conway, L.: Introduction to VLSI Systems. Addison-Wesley, Reading (1980)

    Google Scholar 

  21. Peng, Z., Gaoming, D., Qiang, Z., Kaiyan, C.: EM frequency domain correlation analysis on cipher chips. In: 2009 1-st International Conference on Information Science and Engineering (ICISE), pp. 1729–1732, December 2009

    Google Scholar 

  22. Schimmel, O., Duplys, P., Boehl, E., Hayek, J., Bosch, R., Rosenstiel, W.: Correlation power analysis in frequency domain. In: First International Workshop on Constructive Side-Channel Analysis and Secure Design - COSADE 2010, pp. 1–3 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors thank Natacha Laniado for editing and proofreading this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Naccache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korkikian, R., Naccache, D., de Almeida, G.O., do Canto, R.P. (2014). Practical Instantaneous Frequency Analysis Experiments. In: Obaidat, M., Filipe, J. (eds) E-Business and Telecommunications. ICETE 2013. Communications in Computer and Information Science, vol 456. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44788-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44788-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44787-1

  • Online ISBN: 978-3-662-44788-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics