Skip to main content

Geometric Algebra for Vector Field Analysis and Visualization: Mathematical Settings, Overview and Applications

  • Conference paper
  • First Online:
Topological and Statistical Methods for Complex Data

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

The formal language of Clifford’s algebras is attracting an increasingly large community of mathematicians, physicists and software developers seduced by the conciseness and the efficiency of this compelling system of mathematics. This contribution will suggest how these concepts can be used to serve the purpose of scientific visualization and more specifically to reveal the general structure of complex vector fields. We will emphasize the elegance and the ubiquitous nature of the geometric algebra approach, as well as point out the computational issues at stake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The geometric interpretation of the decomposition of the geometric product in outer and inner products will be explained again for \(V = \mathbb{R}^{3}\) at the beginning of Sect. 2.2.

  2. 2.

    A general demonstration (also valid for a degenerate Q) is given for example in [9, p. 88]. In Euclidean spaces, the well-known Gram-Schmidt orthogonalization can be used.

  3. 3.

    The dualization introduced in Sect. 2.2 makes more general equations for M and J possible.

  4. 4.

    For two blades A and B of grades a and b, the left contraction AB is \(\langle A\,B\rangle _{b-a}\) when a ≤ b, it is zero otherwise. When blade A is contained in blade B, it equals the geometric product AB [7].

  5. 5.

    Quite naturally, the exponential of a blade A is defined with the usual power series \(\sum _{k=0}^{\infty }\frac{A^{k}} {k!}\). The additivity exp(A + B) = exp(A) exp(B) is not true in general. The circular and hyperbolic functions of blades are also defined with power series.

  6. 6.

    This explains the notation F r  = (r ∗∇)F for the directional differentiation.

  7. 7.

    In 2D, the index corresponds the number of turns the field makes around a critical point.

References

  1. Azencot, O., Ben-Chen, M., Chazal, F., Ovsjanikov, M.: An operator approach to tangent vector field processing. In: Computer Graphics Forum, vol. 32, pp. 73–82. Wiley Online Library (2013)

    Google Scholar 

  2. Asimov, D.: Notes on the topology of vector fields and flows. Technical Report, NASA Ames Research Center (1993)

    Google Scholar 

  3. Batard, T.: Clifford bundles: A common framework for image, vector field, and orthonormal frame field regularization. SIAM J. Imag. Sci. 3(3), 670–701 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benger, W., Ritter, M.: Using geometric algebra for visualizing integral curves. GraVisMa (2010)

    Google Scholar 

  5. Bromborsky, A: An introduction to geometric algebra and calculus (2010)

    Google Scholar 

  6. Cartan, E: Leçons sur la théorie des spineurs…, vol. 643. Hermann & cie (1938)

    Google Scholar 

  7. Dorst, L., Fontijne, D., Mann, S: Geometric Algebra for Computer Science (Revised Edition): An Object-Oriented Approach to Geometry. Morgan Kaufmann (2009)

    Google Scholar 

  8. Dieudonné, J.: Sur les groupes classiques. Hermann & cie (1948)

    Google Scholar 

  9. Doran, C., Anthony, A., Lasenby, N.: Geometric algebra for physicists. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  10. Ebling, J., Scheuermann, G.: Clifford fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. 11(4), 469–479 (2005)

    Article  Google Scholar 

  11. Ebling, J., Scheuermann, G.: Clifford convolution and pattern matching on irregular grids. In: Scientific Visualization: The Visual Extraction of Knowledge from Data, pp. 231–248. Springer (2006)

    Google Scholar 

  12. Ebling, J., Wiebel, A., Garth, C., Scheuermann, G.: Topology based flow analysis and superposition effects. In: Hauser, H., Hagen, H., Theisel, H (eds) Topology-Based Methods in Visualization, Mathematics and Visualization, pp. 91–103. Springer (2007)

    Google Scholar 

  13. Fehr, J.: Local rotation invariant patch descriptors for 3d vector fields. In: 20th International Conference on Pattern Recognition (ICPR), pp. 1381–1384. IEEE (2010)

    Google Scholar 

  14. Firby, P.A., Gardiner, C.F.: Surface Topology, 2nd edn. Ellis Horwood Series in Mathematics and Its Applications. Horwood (1991)

    MATH  Google Scholar 

  15. Fontijne, D.: Efficient implementation of geometric algebra. PhD thesis, University Amsterdam (2007)

    Google Scholar 

  16. Gilbert, J.C.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge Studies in Advanced Mathematics (1991)

    Google Scholar 

  17. Grosshans, F.D., Rota, G.-C., Stein, J.A.: Invariant Theory and Superalgebras. Number 69. American Mathematical Soc. (1987)

    Google Scholar 

  18. Henle, M.: A Combinatorial Introduction to Topology. Books in Mathematical Sciences. Freeman (1979)

    MATH  Google Scholar 

  19. Hestenes, D.: New Foundations for Classical Mechanics. Springer (1999)

    Google Scholar 

  20. Hildenbrand, D., Fontijne, D., Perwass, Ch., Dorst, L.: Geometric algebra and its application to computer graphics. In: Tutorial Notes of the EUROGRAPHICS Conference (2004)

    Google Scholar 

  21. Hildenbrand, D.: Conformal geometric algebra. In: Foundations of Geometric Algebra Computing, pp. 27–44. Springer (2013)

    Google Scholar 

  22. Hestenes, D., Sobcyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Kluwer Academic (1987)

    Google Scholar 

  23. Linial, N.: Finite metric spaces, combinatorics, geometry and algorithms. In: Proceedings of the ICM, Beijing,, vol. 3, pp. 573–586 (2002)

    Google Scholar 

  24. Mahmoudi, M.G.: Orthogonal symmetries and clifford algebras. In: Indian Academy of Sciences Proceedings-Mathematical Sciences, vol. 120, p. 535 (2011)

    MathSciNet  Google Scholar 

  25. Mann, S., Rockwood, A.: Computing singularities of 3d vector fields with geometric algebra. In: Visualization, 2002 (VIS 2002), pp. 283–289. IEEE (November 2002)

    Google Scholar 

  26. Perwass, C.: Geometric Algebra with Applications in Engineering, vol. 4. Springer (2009)

    Google Scholar 

  27. Porteous, I.R.: Clifford Algebras and the Classical Groups, vol. 50. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  28. Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: The state of the art in flow visualisation: Feature extraction and tracking. In: Computer Graphics Forum, vol. 22, pp. 775–792. Wiley Online Library (2003)

    Google Scholar 

  29. Reich, W., Scheuermann, G.: Analyzing real vector fields with clifford convolution and clifford–fourier transform. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing, pp. 121–133. Springer, London (2010)

    Chapter  Google Scholar 

  30. Schlemmer, M., Heringer, M., Morr, F., Hotz, I., Bertram, M.-H., Garth, C., Kollmann, W., Hamann, B., Hagen, H.: Moment invariants for the analysis of 2d flow fields. IEEE Trans. Vis. Comput. Graph. 13(6), 1743–1750 (2007)

    Article  Google Scholar 

  31. Snygg, J.: A New Approach to Differential Geometry Using Clifford’s Geometric Algebra. Springer (2011)

    Google Scholar 

  32. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392. Wiley Online Library (2009)

    Google Scholar 

  33. Scheuermann, G., Tricoche, X.: 17 - topological methods for flow visualization. In: Hansen, C.D., Johnson, C.R. (eds) Visualization Handbook, pp. 341–356. Butterworth-Heinemann (2005)

    Google Scholar 

  34. Theisel, H., Rössl, C., Weinkauf, T.: Topological representations of vector fields. In: Floriani, L., Spagnuolo, M. (eds) Shape Analysis and Structuring, Mathematics and Visualization, pp. 215–240. Springer, Berlin (2008)

    Chapter  Google Scholar 

  35. Weinkauf, T., Theisel, H.: Curvature measures of 3d vector fields and their applications. J. WSCG 10(2), 507–514 (2002)

    Google Scholar 

Download references

Acknowledgements

This work undertaken (partially) in the framework of CALSIMLAB is supported by the public grant ANR-11-LABX-0037-01 overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-11-IDEX-0004-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Frey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ausoni, C.O., Frey, P. (2015). Geometric Algebra for Vector Field Analysis and Visualization: Mathematical Settings, Overview and Applications. In: Bennett, J., Vivodtzev, F., Pascucci, V. (eds) Topological and Statistical Methods for Complex Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44900-4_11

Download citation

Publish with us

Policies and ethics