Skip to main content

A Review on Mobile Sensor Localization

  • Conference paper
Security in Computing and Communications (SSCC 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 467))

Included in the following conference series:

Abstract

Wireless sensor networks (WSNs) are on a steady rise in the current decade because of its progressions in hardware design, resource efficiency, communication and routing protocols, and other aspects. Recently, people started preferring mobile nodes in the place of static nodes, which brought mobile sensor network into focus. Location information always plays a key role in Mobile wireless sensor network (MWSN) and precise localization has always been a challenge for mobile sensor nodes. Deploying GPS receivers for each node would render network deployment cost for a dense network. The unavailability of GPS in indoor and underground environment has also put the installation of GPS into question. This makes the sensor nodes to identify its location coordinates or location reference without using GPS, and is achieved with the help of a special node that knows its location coordinates and protocols, called beacon node. This paper’s goal is to confer different localization techniques used by mobile sensor nodes to identify their location information. Problems and future issues have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hu, L., Evans, D.: Localization for mobile sensor networks. In: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, pp. 45–57. ACM (2004)

    Google Scholar 

  2. Munir, S.A., Ren, B., Jiao, W., Wang, B., Xie, D., Ma, J.: Mobile wireless sensor network: Architecture and enabling technologies for ubiquitous computing. In: 21st International Conference on Advanced Information Networking and Applications Workshops, AINAW 2007, vol. 2, pp. 113–120. IEEE (2007)

    Google Scholar 

  3. Füßler, H., Mauve, M., Hartenstein, H., Käsemann, M., Vollmer, D.: Mobicom poster: location-based routing for vehicular ad-hoc networks. ACM SIGMOBILE Mobile Computing and Communications Review 7(1), 47–49 (2003)

    Article  Google Scholar 

  4. Ko, Y.-B., Vaidya, N.H.: Location-aided routing (lar) in mobile ad hoc networks. Wireless Networks 6(4), 307–321 (2000)

    Article  MATH  Google Scholar 

  5. Garrido, J.E., Penichet, V.M.R., Lozano, M.D.: Integration of collaborative features in ubiquitous and context-aware systems using distributed user interfaces. In: Distributed User Interfaces: Usability and Collaboration, pp. 69–83. Springer (2013)

    Google Scholar 

  6. Kuriakose, J., Joshi, S., Vikram Raju, R., Kilaru, A.: A review on localization in wireless sensor networks. In: Thampi, S.M., Gelbukh, A., Mukhopadhyay, J. (eds.) Advances in Signal Processing and Intelligent Recognition Systems. AISC, vol. 264, pp. 599–610. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Peng, R., Sichitiu, M.L.: Angle of arrival localization for wireless sensor networks. In: 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, SECON 2006, vol. 1, pp. 374–382. IEEE (2006)

    Google Scholar 

  8. H Schau and A Robinson. Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. Acoustics, Speech and Signal Processing, IEEE Transactions on, 35(8):1223–1225, 1987.

    Article  Google Scholar 

  9. Gustafsson, F., Gunnarsson, F.: Positioning using time-difference of arrival measurements. In: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2003), vol. 6, p. VI–553. IEEE (2003)

    Google Scholar 

  10. Luo, X., O’Brien, W.J., Julien, C.L.: Comparative evaluation of received signal-strength index (rssi) based indoor localization techniques for construction jobsites. Advanced Engineering Informatics 25(2), 355–363 (2011)

    Article  Google Scholar 

  11. Niculescu, D., Nath, B.: Ad hoc positioning system (aps) using aoa. In: Twenty-Second Annual Joint Conference of the IEEE Computer and Communications, IEEE Societies, INFOCOM 2003, vol. 3, pp. 1734–1743. IEEE (2003)

    Google Scholar 

  12. Patwari, N., Hero III, A.O.: Using proximity and quantized rss for sensor localization in wireless networks. In: Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications, pp. 20–29. ACM (2003)

    Google Scholar 

  13. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM Transactions on Information Systems (TOIS) 10(1), 91–102 (1992)

    Article  Google Scholar 

  14. Minami, M., Fukuju, Y., Hirasawa, K., Yokoyama, S., Mizumachi, M., Morikawa, H., Aoyama, T.: DOLPHIN: A practical approach for implementing a fully distributed indoor ultrasonic positioning system. In: Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 347–365. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Higuchi, T., Higashino, T., Fujii, S., Yamaguchi, H.: Mobile node localization focusing on stop-and-go behavior of indoor pedestrians. IEEE Transactions on Mobile Computing, 1 (2014)

    Google Scholar 

  16. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization for mobile robots. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1322–1328. IEEE (1999)

    Google Scholar 

  17. Tilak, S., Kolar, V., Abu-Ghazaleh, N.B., Kang, K.-D.: Dynamic localization protocols for mobile sensor networks. arXiv preprint cs/0408042 (2008)

    Google Scholar 

  18. Hsieh, Y.-L., Wang, K.: Efficient localization in mobile wireless sensor networks. In: IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, vol. 1, 5 p. IEEE (2006)

    Google Scholar 

  19. Wang, Z., et al.: Manet localization via multi-node toa-doa optimal fusion. In: IEEE Military Communications Conference, MILCOM 2006, pp. 1–7. IEEE (2006)

    Google Scholar 

  20. Liu, B., Brass, P., Dousse, O., Nain, P., Towsley, D.: Mobility improves coverage of sensor networks. In: Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 300–308. ACM (2005)

    Google Scholar 

  21. Nagatani, K., Kiribayashi, S., Okada, Y., Tadokoro, S., Nishimura, T., Yoshida, T., Koyanagi, E., Hada, Y.: Redesign of rescue mobile robot quince. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 13–18. IEEE (2011)

    Google Scholar 

  22. Howard, A., Matarić, M.J., Sukhatme, G.S.: Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In: Distributed Autonomous Robotic Systems 5, pp. 299–308. Springer (2002)

    Google Scholar 

  23. Heo, N., Varshney, P.K.: An intelligent deployment and clustering algorithm for a distributed mobile sensor network. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 5, pp. 4576–4581. IEEE (2003)

    Google Scholar 

  24. Ganeriwal, S., Kansal, A., Srivastava, M.B.: Self-aware actuation for fault repair in sensor networks. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, ICRA 2004, vol. 5, pp. 5244–5249. IEEE (2004)

    Google Scholar 

  25. Wang, G., Cao, G., La Porta, T.: Movement-assisted sensor deployment. IEEE Transactions on Mobile Computing 5(6), 640–652 (2006)

    Article  Google Scholar 

  26. Girod, L., Lukac, M., Trifa, V., Estrin, D.: The design and implementation of a self-calibrating distributed acoustic sensing platform. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, pp. 71–84. ACM (2006)

    Google Scholar 

  27. Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributed network localization with noisy range measurements. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 50–61. ACM (2004)

    Google Scholar 

  28. Hamza, A., Khalifa, S., Hamza, H., Elsayed, K.: A survey on inter-cell interference coordination techniques in ofdma-based cellular networks

    Google Scholar 

  29. Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using reference broadcasts. ACM SIGOPS Operating Systems Review 36(SI), 147–163 (2002)

    Article  Google Scholar 

  30. Kusy, B., Dutta, P., Levis, P., Maroti, M., Ledeczi, A., Culler, D.: Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services. International Journal of Ad Hoc and Ubiquitous Computing 1(4), 239–251 (2006)

    Google Scholar 

  31. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, pp. 32–43. ACM (2000)

    Google Scholar 

  32. Johnson, T.A., Seeling, P.: Localization using bluetooth device names. In: Proceedings of the Thirteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 247–248. ACM (2012)

    Google Scholar 

  33. Fernandes, T.: Indoor localization using bluetooth. In: 6th Doctoral Symposium in Informatics Engineering, pp. 480–483 (2011)

    Google Scholar 

  34. Wisitpongphan, N.: Wireless sensor network planning for fingerprint based indoor localization usng zigBee: Empirical study. In: Meesad, P., Unger, H., Boonkrong, S. (eds.) IC2IT2013. AISC, vol. 209, pp. 83–92. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  35. Manolakis, D.E.: Efficient solution and performance analysis of 3-D position estimation by trilateration. IEEE Transactions on Aerospace and Electronic Systems 32(4), 1239–1248 (1996)

    Article  Google Scholar 

  36. Savvides, A., Park, H., Srivastava, M.B.: The bits and flops of the n-hop multilateration primitive for node localization problems. In: Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, pp. 112–121. ACM (2002)

    Google Scholar 

  37. Hartley, R.I., Sturm, P.: Triangulation. Computer vision and image understanding 68(2), 146–157 (1997)

    Article  Google Scholar 

  38. Bahl, P., Padmanabhan, V.N.: Radar: An in-building rf-based user location and tracking system. In: Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2000, vol. 2, pp. 775–784. IEEE (2000)

    Google Scholar 

  39. Kleeman, L.: Optimal estimation of position and heading for mobile robots using ultrasonic beacons and dead-reckoning. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pp. 2582–2587. IEEE (1992)

    Google Scholar 

  40. Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(1), 35–45 (1960)

    Article  Google Scholar 

  41. Curran, A., Kyriakopoulos, K.J.: Sensor-based self-localization for wheeled mobile robots. Journal of Robotic Systems 12(3), 163–176 (1995)

    Article  MATH  Google Scholar 

  42. Jetto, L., Longhi, S., Venturini, G.: Development and experimental validation of an adaptive extended kalman filter for the localization of mobile robots. IEEE Transactions on Robotics and Automation 15(2), 219–229 (1999)

    Article  Google Scholar 

  43. Fox, D., Burgard, W., Thrun, S.: Active markov localization for mobile robots. Robotics and Autonomous Systems 25(3), 195–207 (1998)

    Article  Google Scholar 

  44. Handschin, J.E.: Monte carlo techniques for prediction and filtering of non-linear stochastic processes. Automatica 6(4), 555–563 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  45. Howard, A., Matark, M.J., Sukhatme, G.: Localization for mobile robot teams using maximum likelihood estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 434–439. IEEE (2002)

    Google Scholar 

  46. Mahalanobis, P.C.: On the generalized distance in statistics. Proceedings of the National Institute of Sciences (Calcutta) 2, 49–55 (1936)

    MATH  Google Scholar 

  47. Doherty, L., El Ghaoui, L., et al.: Convex position estimation in wireless sensor networks. In: Proceedings of the Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2001, vol. 3, pp. 1655–1663. IEEE (2001)

    Google Scholar 

  48. Dunbabin, M., Marques, L.: Robots for environmental monitoring: Significant advancements and applications. IEEE Robotics & Automation Magazine 19(1), 24–39 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuriakose, J., Amruth, V., Sandesh, A.G., Abhilash, V., Kumar, G.P., Nithin, K. (2014). A Review on Mobile Sensor Localization. In: Mauri, J.L., Thampi, S.M., Rawat, D.B., Jin, D. (eds) Security in Computing and Communications. SSCC 2014. Communications in Computer and Information Science, vol 467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44966-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44966-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44965-3

  • Online ISBN: 978-3-662-44966-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics