Skip to main content

An Improved Golden Ball Algorithm for the Capacitated Vehicle Routing Problem

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Abstract

In this paper, we have presented an algorithm that has been improved from the original golden ball algorithm (GB) to solve the capacitated vehicle routing problem (CVRP). The problem objective is to construct a feasible set of vehicle routes that minimizes the total traveling distance and the total number of vehicles used. We have tested the improved GB (IGB) with 88 problem instances. The computational results indicate that IGB outperforms GB in all directions, and the best known solutions are obtained for 79 instances. Moreover, new best-known solutions for three instances are also found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Management Science 6, 80–91 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Toth, P., Vigo, D.: The vehicle routing problem. In: SIAM Monographs on Discrete Mathematics and Applications, SIAM Publishing, Philadelphia (2002)

    Google Scholar 

  3. Christofides, N., Mingozzi, A., Toth, P.: Exact algorithm for the vehicle routing problem, based on spanning tree and shortest path relaxations. Mathematical Programming 20, 255–282 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fisher, M.L.: Optimal solution of vehicle routing problems using minimum K-trees. Operations Research 42, 626–642 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Augerat, P., Belenguer, J., Benavent, E., Corbern, A., Naddef, D., Rinaldi, G.: Computational results with a branch and cut code for the capacitated vehicle routing problem [Research Report 949-M], Universite Joseph Fourier, Grenoble, France (1995)

    Google Scholar 

  6. Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming Series A 100, 423–445 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fukasawa, R., Longo, H., Lysgaard, J., Poggi de Aragão, M., Reis, M., Uchoa, E., Werneck, R.F.: Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem. Mathematical Programming 106, 491–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Operations Research 12, 568–581 (1964)

    Article  Google Scholar 

  9. Wren, A., Holliday, A.: Computer scheduling of vehicles from one or more depots to a number of delivery points. Operational Research Quarterly 23, 333–344 (1972)

    Article  Google Scholar 

  10. Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for vehicle routing. Networks 11, 109–124 (1981)

    Article  MathSciNet  Google Scholar 

  11. Lin, S.: Computer solutions of the travelling salesman problem. Bell System Technical Journal 44, 2245–2269 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Or, I.: Traveling Salesman-Type Combinatorial Optimization Problems and their Relation to the Logistics of Regional Blood Banking. Ph.D. Dissertation, Northwestern University (1976)

    Google Scholar 

  13. Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research 41, 421–451 (1993)

    Article  MATH  Google Scholar 

  14. Subramanian, A., Drummond, L.M.A., Bentes, C., Ochi, L.S., Farias, R.: A parallel heuristic for the Vehicle Routing Problem with Simultaneous Pickup and Delivery. Computers and Operations Research 37, 1899–1911 (2009)

    Article  Google Scholar 

  15. Groër, C., Golden, B., Wasil, E.: A library of local search heuristics for the vehicle routing problem. Mathematical Programming Computation 2, 79–101 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirkpatrick, S., Gelatt, J., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics 1, 147–167 (1995)

    Article  MATH  Google Scholar 

  18. Gen, M., Cheng, R.: Genetic algorithms and engineering design. Wiley, New York (1997)

    Google Scholar 

  19. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  20. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Mans, and Cybernetics 1, 29–41 (1996)

    Article  Google Scholar 

  21. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Computers and Operations Research 31, 1985–2002 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marinakis, Y., Marinaki, M., Dounias, G.: Honey Bee Mating Optimization Algorithm for the Vehicle Routing Problem. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). SCI, vol. 129, pp. 139–148. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A Gravitational Search Algorithm. Information Sciences 179, 2232–2248 (2009)

    Article  MATH  Google Scholar 

  24. Salcedo-Sanz, S., Gallo-Marazuela, D., Pastor-Sánchez, A., Carro-Calvo, L., Portilla-Figueras, A., Prieto, L.: Offshore wind farm design with the Coral Reefs Optimization algorithm. Renewable Energy 63, 109–115 (2014)

    Article  Google Scholar 

  25. Yang, X.S.: Firefly algorithms for mult-imodal optimization. In: Proceedings of the 5th International Symposium on Stochastic Algorithms: Foundations and Applications, pp. 169–178 (2009)

    Google Scholar 

  26. Krishnanand, K.N., Ghose, D.: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intelligence 3, 87–124 (2009)

    Article  Google Scholar 

  27. Osaba, E., Diaz, F., Onieva, E.: Golden ball: a novel meta-heuristic to solve combinatorial optimization problems based on soccer concepts. Applied Intelligence (2014), doi:10.1007/s10489-013-0512-y

    Google Scholar 

  28. Pichpibul, T., Kawtummachai, R.: An improved Clarke and Wright savings algorithm for the capacitated vehicle routing problem. ScienceAsia 38, 307–318 (2012)

    Article  Google Scholar 

  29. Christofides, N., Eilon, S.: An algorithm for the vehicle dispatching problem. Operational Research Quarterly 20, 309–318 (1969)

    Article  Google Scholar 

  30. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. Combinatorial Optimization, pp. 315–338. Wiley, New York (1979)

    Google Scholar 

  31. Letchford, A.N., Lysgaard, J., Eglese, R.W.: A branch-and-cut algorithm for the capacitated open vehicle routing problem. Journal of the Operational Research Society 58, 1642–1651 (2007)

    Article  Google Scholar 

  32. Juan, A.A., Faulin, J., Ruiz, R., Barrios, B., Caballé, S.: The SR-GCWS hybrid algorithm for solving the capacitated vehicle routing problem. Applied Soft Computing 10, 215–224 (2010)

    Article  Google Scholar 

  33. Juan, A.A., Faulin, J., Jorba, J., Riera, D., Masip, D., Barrios, B.: On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics. Journal of the Operational Research Society 62, 1085–1097 (2011)

    Article  Google Scholar 

  34. Zhou, Y., Xie, J., Zheng, H.: A Hybrid Bat Algorithm with Path Relinking for Capacitated Vehicle Routing Problem. Mathematical Problems in Engineering 2013, 1–10 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Vigo, D.: A heuristic algorithm for the asymmetric capacitated vehicle routing problem. European Journal of Operational Research 89, 108–126 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruttanateerawichien, K., Kurutach, W., Pichpibul, T. (2014). An Improved Golden Ball Algorithm for the Capacitated Vehicle Routing Problem. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics