Skip to main content

The Molecular Beacons Self-assembly Model of the Dislocation Permutation Problem

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

  • 1349 Accesses

Abstract

Special “hairpin” structure of molecular beacon makes it with strong specificity, high sensitivity, fast reaction and fluorescence labeling and so on. In this paper, we choose to use a special structure design of self-assembled tile.Compared with DX tiles, TX tile, its special “hairpin” structure makes the ring and stem cadres can express different information, in order to design the assembly module can reduce the complexity, reduce the use of the module, lower assembled depth.The paper uses molecular beacons in self-assembled tile to try and resolve a derangement-wide issues to verify the feasibility of its design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grunbaum, B., Shephard, G.C.: Tilings and Patterns. Freeman, New York (1986)

    Google Scholar 

  2. Seeman, N.C.: Biochemistry and Structural DNA Nanotechnology: An Evolving Symbiotic Relationship. Biochemistry 42(24), 7259–7269 (2003)

    Article  Google Scholar 

  3. Adlenlan, L.: Molecular Computation of Solutions to Combinatorial Problems. Science 266(11), 1021–1024 (1994)

    Article  Google Scholar 

  4. Winfree, E., Liu, F., Wenzler, L.A.: Design and Self-Assembly of Two-Dimensional DNA Crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  5. Seeman, N.C.: DNA Nicks and Nodes and Nanotechnology. Nano Lett. 1, 22–26 (2001)

    Article  Google Scholar 

  6. LaBean, T., Yan, H., Kopatsch, J.: The Construction, Analysis, Ligation and Self-Assembly of DNA Triple Crossover Complexes. Journal of the American Chemical Society 122(9), 1848–1860

    Google Scholar 

  7. Yan, H., Park, S.H., Finkelstein, G.: DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires. Science 301, 1882–1884 (2003)

    Article  Google Scholar 

  8. Rothemund, P.W.K.: Folding DNA to Create Nanoscale Shapes and Patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  9. Du, S.M., Stollar, B.D., Seeman, N.C.: A Synthetic DNA Molecule in Three Knotted Topologies. Journal of the American Chemical Society 117, 1194–1200 (1995)

    Article  Google Scholar 

  10. Mao, C., Sun, W., Seeman, N.C.: Construction of Borromean Rings from DNA. Nature 386, 137–138 (1997)

    Article  Google Scholar 

  11. Chen, J., Seeman, N.C.: The Synthesis from DNA of a Molecule with the Connectivity of a Cube. Nature 350, 631–633 (1991)

    Article  Google Scholar 

  12. Tyagi, S., Kramer, F.R.: Molecular Beacon: Probes that Fluoresce Upon Hybridization. Nat. Biotechnol. 14, 303–308 (1996)

    Article  Google Scholar 

  13. Brun, Y.: Arithmetic Computation in the Tile Assembly Model: Addition and Multiplication. Theoretical Computer Science 378, 17–31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, J., Yin, Z., Chen, M., Cui, J. (2014). The Molecular Beacons Self-assembly Model of the Dislocation Permutation Problem. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics