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Abstract

Theoreticians have studied distributed algorithms in the radio network model for close to three
decades. A significant fraction of this work focuses on lowerbounds for basic communication prob-
lems such aswake-up(symmetry breaking among an unknown set of nodes) andbroadcast(message
dissemination through an unknown network topology). In this paper, we introduce a new technique for
proving this type of bound, based on reduction from a probabilistic hitting game, that simplifies and
strengthens much of this existing work. In more detail, in this single paper we prove new expected
time and high probability lower bounds for wake-up and global broadcast in single and multi-channel
versions of the radio network model both with and without collision detection. In doing so, we are able
to reproduce results that previously spanned a half-dozen papers published over a period of twenty-five
years. In addition to simplifying these existing results, our technique, in many places, also improves the
state of the art: of the eight bounds we prove, four strictly strengthen the best known previous result (in
terms of time complexity and/or generality of the algorithmclass for which it holds), and three provide
the first known non-trivial bound for the case in question. The fact that the same technique can easily
generate this diverse collection of lower bounds indicatesa surprising unity underlying communication
tasks in the radio network model—revealing that deep down, below the specifics of the problem defini-
tion and model assumptions, communication in this setting reduces to finding efficient strategies for a
simple game.

1 Introduction

In this paper, we introduce a new technique for proving lowerbounds for basic communication tasks in the
radio network model. We use this technique to unify, simplify, and in many cases strengthen the best known
lower bounds for two particularly important problems: wake-up and broadcast.
The Radio Network Model. The radio network model represents a wireless network as a graphG = (V,E),
where the nodes inV correspond to the wireless devices and the edges inE specify links. Each node can
broadcast messages to its neighbors inG. If multiple neighbors of a given node broadcast during the same
round, however, the messages are lost due to collision. Thismodel was first introduced by Chlamtac and
Kutten [4], who used it to study centralized algorithms. Soon after, Bar-Yehuda et al. [2, 3] introduced the
model to the distributed algorithms community where variations have since been studied in a large number
of subsequent papers; e.g., [1, 19, 17, 20, 13, 18, 6, 10, 11, 16, 9, 12, 8, 7, 15, 14].

Two of the most investigated problems in the radio network model arewake-up(basic symmetry break-
ing among an unknown set of participants in a single hop network) andbroadcast(propagating a message
from a source to all nodes in an unknown multihop network). Lower bounds for these problems are im-
portant because wake-up and/or broadcast reduce to most useful communication tasks in this setting, and
therefore capture something fundamental about the cost of distributed computation over radio links.
Our Results. In this paper, we introduce a new technique (described below) for proving lower bounds for
wake-up and broadcast in the radio network model. We use thistechnique to prove new expected time and
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high probability lower bounds for these two problems in the single and multiple channel versions of the
radio network model both with and without collision detection. In doing so, we reproduce in this single
paper a set of existing results that spanned a half-dozen papers [21, 19, 17, 13, 9, 7] published over a
period of twenty-five years. Our technique simplifies these existing arguments and establishes a (perhaps)
surprising unity among these diverse problems and model assumptions. Our technique also strengthens
the state of the art. All but one of the results proved in this paper improve the best known existing result
by increasing the time complexity and/or generalizing the class of algorithms for which the bound holds
(many existing bounds for these problems hold only foruniformalgorithms that require nodes to use a pre-
determined sequence of independent broadcast probabilities; all of our lower bounds, by contrast, hold for all
randomized algorithms). In several cases, we prove the firstknown bound for the considered assumptions.

The full set of our results with comparisons to existing workare described in Figure 1. Here we briefly
mention three highlights (in the following,n is the network size andD the network diameter). In Section 6,
we significantly simplify Willard’s seminalΩ(log log n) bound for expected time wake-up with collision
detection [21]. In addition, whereas Willard’s result onlyholds for uniform algorithms, our new version
holds for all algorithms. In Section 7, we prove the first tight bound for high probability wake-up with
multiple channels and the first known expected time bound in this setting. And in Section 9, we prove that
Kushilevitz and Mansour’s oft-citedΩ(D log (n/D)) lower bound for expected time broadcast [19]still
holdseven if we assume multiple channels and/or collision detection—opening an unexpected gap with the
wake-up problem for which these assumptions improve the achievable time complexity.
Our Technique. Consider the following simple game which we callk-hitting. A refereesecretly selects
a target setT ⊆ {1, 2, ..., k}. The game proceeds in rounds. In each round, aplayer (represented by a
randomized algorithm) generates a proposalP . If |P ∩ T | = 1, the player wins. Otherwise, it moves on to
the next round. In Section 3, we leverage a useful combinatorial result due to Alon et al. [1] to prove that this
game requiresΩ(log2 k) rounds to solve with high probability (w.r.t.k), andΩ(log k) rounds in expectation.
(Notice, you could propose the sets of a(k, k)-selective family[5] to solve this problem deterministically,
but this would requireΩ(k) proposals in the worst-case.)

These lower bounds are important because in this paper we show that this basic hitting game reduces
to solving wake-up and broadcast under all of the different combinations of model assumptions that we
consider. In other words, whether or not you are solving wake-up or broadcast, assuming multiple channels
or a single channel, and/or assuming collision detection orno collision detection, if you can solve the
problem fast you can solve this hitting game fast. Our lower bounds on the hitting game, therefore, provide
a fundamental speed-limit for basic communication tasks inthe radio network model.

The trick in applying this method is identifying the proper reduction argument for the assumptions in
question. Consider, for example, our reduction for wake-upwith a single channel and no collision detection.
Assume some algorithmA solves wake-up with these assumptions inf(n) rounds, in expectation. As
detailed in Section 5, we can useA to define a player that solves thek-hitting game inf(k) rounds with
the same probability—allowing the relevant hitting game lower bound to apply. Our strategy for this case
is to have the player simulateA running on allk nodes in a network of sizek. For each round of the
simulation, it proposes the ids of the nodes that broadcast,then simulates all nodes receiving nothing. This
is not necessarily a valid simulation ofA running onk nodes:but it does not need to be.What we care
about are the simulated nodes with ids inT : the (unknown to the player) target set for this instance of the
hitting game. The key observation is that in thetarget executionwhere only the nodes inT are active, they
will receive nothing until the first round where one node broadcasts alone—solving wake-up. In the player’s
simulation, these same nodes are also receiving nothing (bythe the player’s fixed receive rule) so they will
behave the same way. This will lead to a round of the simulation where only one node fromT (and perhaps
other nodes outside ofT ) broadcast. The player will propose these ids, winning the hitting game.

These reductions get more tricky as we add additional assumptions. Consider, for example, what hap-
pens when we now assume collision detection. Maintaining consistency between the nodes inT in the player
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Existing Results (exp. | high) This Paper (exp. | high)

wake-up Ω(log n) | Ω(log2 n) [17, 13] Ω(log n) | Ω(log2 n) (*)
wake-up/cd Ω(log log n) | Ω(log n) [21] Ω(log log n) | Ω(log n) (*)

wake-up/mc (open)| Ω( log2 n
C log logn + log n) [9, 7] Ω( logn

C
+ 1) | Ω( log

2 n
C

+ log n) (*)

wake-up/cd/mc Ω(1) | (open) Ω(1) | Ω( lognlog C + log log n)

broadcast Ω(D log (n/D)) [19] Ω(D log (n/D))

broadcast/cd/mc (open) Ω(D log (n/D)

Figure 1: This table summarizes the expected time (exp.) and high probability (high) results for wake-up and broadcast in the
existing literature as well as the new bounds proved in this paper. In these bounds,n is the network size,C the number of channels,
andD the network diameter. In the problem descriptions, “cd” indicates the collision detection assumption and “mc” indicates
the multiple channels assumption. In the existing results we provide citation for the paper(s) from which the results derive and
use“(open)” to indicate a previously open problem. In all cases, the new results in this paper simplify the existing results. We
marked some of our results with “(*)” to indicate that the existing results assumed the restricteduniform class of algorithms. All
our algorithms hold for all randomized algorithms, so any result marked by “(*)” is strictly stronger than the existing result. We do
not separate expected time and high probability for the broadcast problems as the tight bounds are the same for both cases.

simulation and the target execution becomes more complicated, as the player must now correctly simulate
a collision event whenever two or more nodes fromT broadcast—even though the playerdoes not know
T . Adding multiple channels only further complicates this need for consistency. Each bound in this paper,
therefore, is built around its own clever method for a hitting game player to correctly simulate a wake-up or
broadcast algorithm in such a way that it wins the hitting game with the desired efficiency. These arguments
are simple to understand and sometimes surprisingly elegant once identified, but can also be elusive before
they are first pinned down.
Roadmap. A full description of our results and how they compare to existing results is provided in Figure 1.
In addition, before we prove each bound in the sections that follow, we first discuss in more detail the
relevant related work. In Section 2, we formalize our model and the two problems we study. In Section 3,
we formalize and lower bound the hitting games at the core of our technique. In Section 4, we detail a
general simulation strategy that we adopt in most of our wake-up bounds (by isolating this general strategy
in its own section we reduce redundancy). Sections 5 to 8 contain our wake-up lower bounds, and Section 9
contains our broadcast lower bound. (We only need one section for broadcast as we prove that the same
result holds for all assumptions considered in this paper.)

2 Model and Problems

In this paper we consider variants of the standardradio network model. This model represents a radio net-
work with a connected undirected graphG = (V,E) of diameterD. Then = |V | nodes in the graph
represent the wireless devices and the edges inE capture communication proximity. In more detail, execu-
tions in this model proceed in synchronous rounds. In each round, each node can choose to eithertransmit
a message orreceive. In a given round, a nodeu ∈ V can receive a message from a nodev ∈ V , if and only
if the following conditions hold: (1)u is receiving andv is transmitting; (2)v is u’s neighbor inG; and (3)
v is theonly neighbor ofu transmitting in this round. The first condition captures thehalf-duplex nature of
the radio channel and the second condition captures messagecollisions. To achieve the strongest possible
lower bounds, we assume nodes are provided unique ids from[n]. In the following, we say an algorithm is
uniform if (active) nodes use a predetermined sequence of independent broadcast probabilities to determine
whether or not to broadcast in each round, up until they first receive a message.

In thecollision detectionvariant of the radio network model, a receiving nodeu can distinguish between
silence (no neighbor is transmitting) and collision (two ormore neighbors are transmitting) in a given round.

3



In this paper, to achieve the strongest possible lower bounds, when studying single hop networks we also
assume that a transmitter can distinguish between broadcasting alone and broadcasting simultaneously with
one or more other nodes. In themultichannelvariant of the radio network model, we use a parameterC ≥ 1
to indicate the number of orthogonal communication channels available to the nodes. WhenC > 1, we
generalize the model to require each node to choose in each round a single channel on which to participate.
The communication rules above apply separately to each channel. In other words, a nodeu receives a
message fromv on channelc in a given round, if and only if in this round: (1)u receives onc and v
transmits onc; (2) v is a neighbor ofu; and (3) no other neighbor ofu transmits onc.

We study bothexpected timeandhigh probabilityresults, where we define the latter to mean probability
at least1− 1

n . We define the notation[i, j], for integersi ≤ j, to denote the range{i, i+1, ..., j}, and define
[i], for integeri > 0, to denote[1, i].
Problems. Thewake-upproblem assumes a single hop network consisting ofinactivenodes. At the begin-
ning of the execution, an arbitrary subset of these nodes areactivatedby an adversary. Inactive nodes can
only listen, while active nodes execute an arbitrary randomized algorithm. We assume that active nodes have
no advance knowledge of the identities of the other active nodes. The problem is solved in the first round in
which an active node broadcasts alone (thereforewaking upthe listening inactive nodes). When considering
a model with collision detection, we still require that an active node broadcasts alone to solve the problem
(e.g., to avoid triviality, we assume that the inactive nodes need to receive a message to wake-up, and that
simply detecting a collision is not sufficient1). When considering multichannel networks, we assume the
inactive nodes are all listening on the same knowndefaultchannel (say, channel1). To solve the problem,
therefore, now requires that an active node broadcast aloneon the default channel.

Thebroadcastproblem assumes a connected multihop graph. At the beginning of the execution, a single
sourcenodeu is provided a messagem. The problem is solved once every node in the network has received
m. We assume nodes do not have any advance knowledge of the network topology. As is standard, we
assume that nodes are inactive (can only listen) until they first receivem. As in the wake-up problem,
detecting a collision alone is not sufficient to activate an inactive node, and in multichannel networks, we
assume inactive nodes all listen on the default channel.

3 The k-Hitting Game

Thek-hitting game, defined for some integerk > 1, assumes aplayer that faces off against anreferee. At
the beginning of the game, the referee secretly selects atarget setT ⊆ {1, ..., k}. The game then proceeds
in rounds. In each round, the player generates aproposalP ⊆ {1, ..., k}. If |P ∩ T | = 1, then the player
wins the game. Otherwise, the player moves on to the next round learning no information other than the fact
that its proposal failed. We formalize both entities as probabilistic automata and assume the player does not
know the referee definition and the referee does not know the player’s random bits. Finally, we define the
restrictedk-hitting game to be a variant of the game where the target set is always of size two.
A Useful Combinatorial Result. Before proving lower bounds for our hitting game we cite an existing
combinatorial result that will aid our arguments. To simplify the presentation of this result, we first define
some useful notation. Fix some integerℓ > 0. Consider two setsA ⊆ {1, 2, ..., ℓ} andB ⊆ {1, 2, ...ℓ}. We
say thatA hitsB if |A ∩B| = 1. Let anℓ-family be a family of non-empty subsets of{1, 2, ..., ℓ}. Thesize
of anℓ-family A , sometimes noted as|A |, is the number of sets inA . Fix two ℓ-familiesA andB. We
sayA hits B, if for everyB ∈ B there exists anA ∈ A such thatA hitsB. Using this notation, we can
now present the result:

1Without this restriction, the problem is trivially solved by just having all active nodes broadcast in the first round.
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Lemma 3.1 ([1, 15]). There exists a constantβ > 0, such that for any integerℓ > 1, these two results hold:

1. There exists anℓ-family R, where|R| ∈ O(ℓ8), such that for everyℓ-family H that hitsR, |H | ∈
Ω(log2 ℓ).

2. There exists anℓ-familyS , where|S | ∈ O(ℓ8), such that for everyH ⊆ {1, 2, ..., ℓ}, H hits at most
a ( 1

β log (ℓ))-fraction of the sets inS .

The first result from this lemma was proved in a 1991 paper by Alon et al. [1]. It was established using the
probabilistic method and was then used to prove aΩ(log2 n) lower bound oncentralizedbroadcast solutions
in the radio network model. The second result is a straightforward consequence of the analysis used in [1],
recently isolated and proved by Ghaffari et al. [15].
Lower Bounds for the k-Hitting Game. We now prove lower bounds on our general and restrictedk-hitting
games. These results, which concern probabilities, leverage Lemma 3.1, which concerns combinatorics, in
an interesting way which depends on the size ofR andS being polynomial inℓ.

Theorem 3.2. Fix some playerP that guarantees, for allk > 1, to solve thek-hitting game inf(k) rounds,
in expectation. It follows thatf(k) ∈ Ω(log k).

Proof. Fix anyk > 1. Letβ andS be the constant andℓ-family provided by the second result of Lemma 3.1
applied toℓ = k. The lemma tells us that for anyP ⊆ [k], P hits at most a( 1

β log k )-fraction of the sets in

S . It follows that for anyk-family H , such that|H | < β log k
2 , H hits less than half the sets inS .

We now use these observations to prove our theorem. LetP be ak-hitting game player. Consider a
referee that selects the target set by choosing a setT from S with uniform randomness. LetH be the
first ⌊β log k

2 ⌋ − 1 proposals generated byP in a given instance of the game. By our above observation, this
sequence of proposals hits less than half the sets inS . Because the target set was chosen fromS with
randomness that was uniform and independent of the randomness used byP to generate its proposals, it
follows that the probability thatH hits the target is less than1/2. To conclude, we note thatf(k) must
therefore be larger than⌊β log k

2 ⌋ − 1 ∈ Ω(log k), as required by the theorem.

Theorem 3.3. Fix some playerP that guarantees, for allk > 1, to solve thek-hitting game inf(k) rounds
with probability at least1− 1

k . It follows thatf(k) ∈ Ω(log2 k).

Proof. Fix anyℓ > 1. Let R be theℓ-family provided by the first result of Lemma 3.1 applied to this value.
Let t = |R|. We know from the lemma thatt ∈ O(ℓ8).

To achieve our bound, we will consider the behavior of a player P in thek-hitting game fork = t+1. As
in Theorem 3.2, we have our referee select its target set by choosing a set fromR with uniform randomness.
(Notice, in this case, our referee is actually making thingseasierfor the player by restricting its choices to
only the values in[ℓ] even though the game is defined for the value set[k], which is larger. As we will show,
this advantage does not help the player much.)

Let c log2 (ℓ), for some constantc > 0, be the exact lower bound from the first result of Lemma 3.1.
Let H be the first⌊c log2 (ℓ)⌋ − 1 proposals generated byP in a given instance of the game. Lemma 3.1
tells us that there is at least one setR ∈ R thatH does not hit. Because the target set was chosen from
R with randomness that was uniform and independent of the randomness used byP, it follows that the
probability thatH misses the target is at least1/t (recall thatt is the size ofR). Inverting this probability,
it follows that the probability thatP wins the game with the proposals represented byH is less than or
equal to1 − 1

t = 1− 1
k−1 < 1 − 1

k . It follows thatf(k) must be larger than|H | and therefore must be of
size at leastc log2 (ℓ) ∈ Ω(log2 (ℓ)). To conclude the proof, we note thatk ∈ O(ℓ8), and therefore we can
expressℓ in terms ofk as some polynomial inΘ(k1/d), for some positive constantd ≤ 8. Substituting for
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ℓ in our above equation, it follows thatf(k) ∈ Ω(log2 (ℓ)) ∈ Ω(log2 (k1/d)) ∈ Ω(log2 (k)), as required by
the theorem.

Theorem 3.4. Fix some playerP that guarantees, for allk > 1, to solve therestrictedk-hitting game in
f(k) rounds with probability at least1− 1

k . It follows thatf(k) ∈ Ω(log k).

Proof. Our proof strategy is to prove a variant of the first result of Lemma 3.1 that will allow us to reuse the
proof argument of Theorem 3.3 to prove our needed result for the restricted case. To do so, fix anyk > 1.
Consider thek-family R2 that consists of the

(k
2

)

unique pairs in[k] × [k]. Fix somek-family H of size
t < log k. We now show the existence of someR ∈ R2 not hit byH . To do so, we first define a function
fH : [k] → {0, 1}t, wherefH (i) returns a binary stringbi of lengtht, where bitr of bi is 1 if and only if i
is in therth set inH , by some fixed ordering of these sets. Given our assumption that t < log k, it follows
that the total number of unique binary strings of lengtht can be upper bounded as2t < 2log k = k.

The pigeonhole principle tells us that there existi, j ∈ [k], i 6= j, such thatfH (i) = fH (j). It follows
that the set{i, j} ∈ R2 is not hit byH , as we just established that there is noH ∈ H that containsi or
j, but not both. At this point, we have established the existence of ak-family made up only of sets of size
two (R2) such that anyk-family H that hits this family must be of size at leastlog k. We can consider this
a variant of the first result of Lemma 3.1, and therefore achieve our bound by now applying the same proof
argument as in Theorem 3.3 to this variant of the result. Thisargument provides thatΩ(log k) rounds are
required to solve the restricted hitting game with probability at least1− 1

k , as required by the theorem.

4 Simulation Strategy

Most of our bounds for thewake-upproblem use a similar simulation strategy. To reduce redundancy,
we define the basics of the strategy and its accompanying notation in its own section. In more detail, the
wake-up simulation strategy, defined with respect to a wake-up algorithmA, is a general strategy for ak-
hitting game player to generate proposals based on a local simulation ofA. The strategy works as follows.
The player simulatesA running on allk nodes in ak-node network satisfying the same assumptions on
collision detection and channels assumed byA. For each simulated round, the player will generate one or
more proposals for the hitting game. In more detail, at the beginning of a new simulated round, the player
simulates thek nodes runningA up until the point that they make a broadcast decision. At this point, the
player applies aproposal rulethat transforms these decisions into one or more proposals for the hitting
game. The player then makes these proposals, one by one, in the game. If none of these proposals wins the
hitting game, then the player most complete the current simulated round by using areceive ruleto specify
what each node receives; i.e., silence, a message, or a collision (if collision detection is assumed byA). In
other words, a given application of the wake-up simulation strategy is defined by two things: a definition of
theproposal ruleandreceive ruleused by the player to generate proposals from the simulation, and specify
receive behavior in the simulation, respectively.

To analyze a wake-up simulation strategy for a given instance of thek-hitting game with target setT , we
define thetarget executionfor this execution to be the execution that would result ifA was run in a network
where only the nodes corresponding toT were active and they used the same random bits as the player uses
on their behalf in the simulation. We say an instance of the simulation strategy isconsistentwith its target
execution through a given round, if the nodes correspondingto T in the simulation behave the same (e.g.,
send and receive the same messages) as the corresponding nodes in the target execution through this round.
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5 Lower Bounds for Wake-Up

We begin by proving tight lower bounds for both expected and high probability solutions to the wake-up
problem in the most standard set of assumptions used with theradio network model: a single channel and
no collision detection. As explained below, our bounds are tight and generalize the best know previous
bounds, which hold only for uniform algorithms, to now applyto all randomized algorithms. (We note that
a preliminary version of our high probability bound below appeared as an aside in our previous work on
structuring multichannel radio networks [8]).

In terms of related work, thedecaystrategy introduced Bar-Yehuda et al. [3] solves the wake-up problem
in this setting with high probability inO(log2 n) rounds and in expectation inO(log n) rounds. In 2002,
Jurdzinski and Stachowiak [17] proved the necessity ofΩ

( logn log (1/ǫ)
log logn+log log (1/ǫ)

)

rounds to solve wake-up with
probability at least1 − ǫ, which proves decay optimal within alog log n factor. Four years later, Farach-
Colton et al. [13] removed thelog log n factor by applying linear programming techniques. As mentioned,
these existing bounds only apply to uniform algorithms in which nodes use a predetermined sequence of
broadcast probabilities. (Section3.1 of [13] claims to extend their result to a slightly more general class of
uniform algorithms in which a node can choose a uniform algorithm to run based on its unique id.)

Theorem 5.1. LetA be an algorithm that solves wake-up with high probability inf(n) rounds in the radio
network model with a single channel and no collision detection. It follows thatf(n) ∈ Ω(log2 n).

Proof. Fix some wake-up algorithmA that solves wake-up inf(n) rounds with high probability in a network
with one channel and no collision detection. We start by defining a wake-up simulation strategy that usesA
(see Section 4). In particular, consider theproposal rulethat has the player propose the id of every node that
broadcasts in the current simulated round, and thereceive rulethat always has all nodes receive nothing.

Let PA be thek-hitting game player that uses this simulation strategy. Weargue thatPA solves the
k-hitting game inf(k) rounds with high probability ink. To see why, notice that for a given instance of the
hitting game with targetT , PA is consistent with the target execution until the receive rule of the first round
in which exactly one node inT broadcasts. (In all previous rounds,PA correctly simulates the nodes inT
receiving nothing, as its receive rule has all nodes always receive nothing.) AssumeA solves wake-up in
roundr in the target execution. It follows thatr is the first round in which a node inT broadcasts alone in
this execution. By our above assumption,PA is consistent with the target execution up to the application of
the receive rule inr. In particular, it is consistent when it applies the proposal rule for simulated roundr.
By assumption, this proposal will include exactly one node fromT—winning the hitting game.

We assumed thatA solves wake-up inf(n) rounds with high probability inn. Combined with our
above argument, it follows thatPA solves thek-hitting game inf(k) rounds with high probability ink. To
complete our lower bound, we apply a contradiction argument. In particular, assume for contradiction that
there exists a wake-up algorithmA that solves wake-up inf(n) ∈ o(log2 n) rounds, with high probability.
The hitting game playerPA defined above will therefore solvek-hitting in o(log2 n) rounds with high
probability. This contradicts Theorem 3.3.

Theorem 5.2. Let A be an algorithm that solves wake-up inf(n) rounds, in expectation, in the radio
network model with a single channel and no collision detection. It follows thatf(n) ∈ Ω(log n).

Proof Idea. It is sufficient to apply the same argument as in Theorem 5.1. The only change is in the final
contradiction argument, where we simply replacelog2 n with log n, and now contradict Theorem 3.2.

6 Lower Bounds for Wake-Up with Collision Detection

We prove tight lower bounds for expected and high probability bounds on the wake-up problem in the
radio network model with collision detection. In terms of related work, a seminal paper by Willard [21]
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describes a wake-up algorithm (he called the problem “selection resolution,” but the definition in this setting
is functionally identical) which solves the problem inO(log log n) rounds, in expectation. He also proved
the result tight with anΩ(log log n) lower bound for uniform algorithms. As Willard himself admits, his
lower bound proof is mathematically complex. Below, we significantly simplify this bound and generalize it
to hold for all algorithms. From a high-probability perspective, many solutions exist in folklore for solving
wake-up (and related problems) inO(log n) rounds. Indeed, leveraging collision detection, wake-up can
be solveddeterministicallyin O(log n) rounds (e.g., use the detector to allow the active nodes to move
consistently through a binary search tree to identify the smallest active id). The necessity ofΩ(log n)
rounds seems also to exist in folklore.

We begin with our high probability result. Our simulation strategy is more difficult to deploy here
because the player must now somehow correctly simulate the collision detection among the nodes in the
(unknown) target setT . To overcome this difficulty, we apply our solution to networks in which only two
nodes are activated and then achieve a contradiction with our lower bound onrestrictedhitting.

Theorem 6.1. LetA be an algorithm that solves wake-up with high probability inf(n) rounds in the radio
network model with a single channel and collision detection. It follows thatf(n) ∈ Ω(log n).

Proof. Fix some wake-up algorithmA that solves wake-up inf(n) rounds with high probability in a network
with one channel and collision detection. We start by defining a wake-up simulation strategy that usesA
(see Section 4). In particular, consider theproposal rulethat has the player propose the id of every node
that broadcasts in the current simulated round, and areceive rulethat has two cases: (1) if a given player
broadcast in the current simulated round, it is simulated asdetecting a collision; (2) if a given player did not
broadcast in the current simulated round, it is simulated asreceiving and detecting nothing.

Let PA be the restrictedk-hitting game player that uses this simulation strategy. Wecannot argue that
this player solves the generalk-hitting game, as the receive rule above is not likely to be consistent for many
target sets. We instead argue thatPA solvesrestrictedk-hitting in f(k) rounds with high probability ink.
In other words, our receive rule above, we will show, keeps the simulation consistent when the target only
contains two nodes (as is the case in restricted hitting). Inmore detail, fix a given instance of the restricted
k-hitting game with some target setT = {i, j}. We argue thatPA is consistent with the target execution
until it applies the receive rule in the first round in which a node inT broadcasts alone (at which point, the
player will have won the hitting game). In particular, thereare three cases relevant to the receive behavior
in a given round of the target execution forT . The first case is thati andj are both silent. In this case,
they would both receive and detect nothing in the target execution. By definition, they will both receive
nothing inPA’s simulation as well. The second case is that bothi andj broadcast. In this case, they would
both correctly detect a collision in the target execution. By definition, the same occurs in the simulation.
The third case has exactly one of the two nodes broadcasting.In this case, the player wins the hitting game
during the proposal rule of this simulated round, so we do nothave to care about applying the receive rule
in a way that maintains consistency.

We assumed thatA solves wake-up inf(n) rounds with high probability inn. Clearly, this bound
still holds even if we restrict our attention to networks with only two nodes activated. Combined with
our above argument, therefore, it follows thatPA solves the restrictedk-hitting game inf(k) rounds with
high probability ink. Assume for contradiction thatf(n) ∈ o(log n). It would follow thatPA solves the
restricted hitting game ino(log k) rounds with high probability. This contradicts Theorem 3.4.

We now simplify and strengthen Willard’s bound ofΩ(log log n) rounds for expected time wake up. At
the core of our result is a pleasingly simple but surprisingly useful observation: if you can solve wake-up
in t rounds with collision detection, you can then use this strategy to solve the hitting game in2t rounds
by simulating (carefully) all possible sequences of outcomes for the collision detector behavior in at round
execution. Solving the problem ino(log log n) rounds (in expectation) with collision detection, therefore,
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yields a hitting game solution that requires only2o(log log k) = o(log k) rounds (in expectation), contradicting
Theorem 3.2—our lower bound on expected time solutions to the hitting game.

Theorem 6.2. Let A be an algorithm that solves wake-up inf(n) rounds, in expectation, in the radio
network model with a single channel and collision detection. It follows thatf(n) ∈ Ω(log log n).

Proof. Fix some algorithmA that solves wake-up inf(n) rounds, in expectation, in this setting. We start by
defining a playerPA that simulatesA to solvek-hitting in no more than2f(k)+1 rounds, in expectation. Our
player will use a variant of the simulation strategy defined in Section 4 and used in the preceding proofs,
and we will, therefore, adopt much of the terminology of thisapproach (with some minor modifications). In
more detail, in this variant,PA will run a different fixed-length simulation ofA, starting from round1, to
generate each of its guesses in the hitting game. Most of these simulations willnot be consistent with the
relevant target execution. We will show, however, that in the case that the target execution solves wake-up,
at least one such simulation is consistent and will therefore win the game.

In more detail, for a givenk, letBf(k) be a full rooted binary tree of depthf(k). We define a tree node
labelingℓ, such that for every non-root nodeu, ℓ(u) = 0 if u is a left child of its parent andℓ(u) = 1 if u is
a right child (by some consistent orientation). Letd be the depth function (i.e.,d(u) is the depth ofu in the
tree withd(root) = 0). Finally, letp(u) return thed(u)-bit binary string defined by the sequence of labels
(by ℓ) on the path that descends from the root tou (includingu). For example, if the path from the root tou
goes from the root to its right childv, then fromv to its left childu, p(u) = 10.

Our playerPA, when playing thek-hitting game, generate one guess for each node inBf(k). Fix some
such nodeu. To generate a guess foru, the player first executes ad(u)-round simulation ofA, running on
all k nodes in ak-node network, usingp(u) to specify collision detector behavior (in a manner described
below). After it simulates thesed(u) full rounds, it then simulates just enough of roundd(u)+1 to determine
the simulated nodes’ broadcast decisions in this round. Theplayer proposes the id of the nodes that choose to
broadcast in this final partial round. (When generating a guess for the root node, the player simply proposes
the nodes that broadcast in the first round.)

In more detail, for each roundr ≤ d(u) of the simulation for tree nodeu, if the rth bit of p(u) is 0, the
player simulates all nodes detecting silence, and if the bitis 1, it simulates all nodes detecting a collision.
As a final technicality, letκ be the random bits provided to the player to resolve its random choices. We
assume that for each simulated nodei, the players uses the same bits fromκ for i in each of its simulations.
We do not, therefore, assume independence between different simulations.

Consider the target execution ofA for a given instance of the hitting game with target setT and random
bitsκ. Assume that the target execution defined for these bits and target set solves wake-up in some round
r ≤ f(k). Notice that in every roundr′ < r, there are only two possible behaviors: (1) no nodes broadcast
(and all nodes therefore receive and detect nothing); and (2) two or more nodes broadcast (and all nodes
therefore detect a collision). By definition, there exists anodeu in Bf(k) such thatp(u) is a binary string of
lengthr−1, where for each bit positioni in the string,i = 0 if no nodes broadcast in that round of the target
execution, andi = 1 if two or more nodes broadcast in that round of the target execution. It follows that
the firstr − 1 rounds of the simulation associated with tree nodeu are consistent with the target execution.
Because exactly one node fromT broadcasts in roundr of the target execution, and theu-simulation is
consistent through roundr−1, then this same single node fromT will broadcast in the simulated beginning
of roundr. The player’s proposal associated withu will therefore win the hitting game.

Pulling together the pieces, by assumption, the target execution for a givenT andκ solves wake-up
in f(k) rounds, in expectation. It follows that our player solvesk-hitting with the same probability. The
number of guesses required to solve the problem in this case is bounded by the number of nodes inBf(k)

(as there is one guess per node), which is2f(k)+1 − 1. We can now conclude with our standard style of
contradiction argument. Assume for contradiction that there exists an algorithmA that solves wake-up with
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a single channel and collision detection inf(n) ∈ o(log log n) rounds, in expectation. It follows thatPA

wins thek-hitting game in2f(k)+1 ∈ o(log k) rounds, in expectation. This contradicts Theorem 3.2.

7 Lower Bounds for Wake-Up with Multiple Channels

In recent years, theoreticians have paid increasing attention to multichannel versions of the radio network
model (e.g., [10, 11, 16, 9, 12, 8, 7]). These investigationsare motivated by the reality that most network
cards allow the device to choose its channel from among multiple available channels. From a theoretical
perspective, the interesting question is how to leverage the parallelism inherent in multiple channels to
improve time complexity for basic communication problems.Daum et al. [7], building on results from Dolev

et al. [9], prove a lower bound ofΩ
( log2 n
C log logn +log n

)

rounds for solving wake-up with high probability and
uniform algorithms in a network withC channels. A lower bound for expected-time solutions was left open.

The best known upper bound solves the problem inO
( log2 n

C
+ log n

)

rounds with high probability and in

O
( logn

C
+ 1

)

rounds in expectation [7].
In the theorems that follow, we prove new lower bounds that match the best known upper bounds.

These bounds close thelog log n gap that exists with the best known previous results, establish the first non-
trivial expected time bound, and strengthen the results to hold for all algorithms. We begin with the high
probability result. In this bound, thelog2 n/C term dominates whenC is small and thelog n term dominates
whenC is large. We handle these cases separately in their own lemmas—each using a different simulation
strategy—then combine them to achieve our final theorem.

Lemma 7.1. LetA be an algorithm that solves wake-up with high probability inf(n, C) rounds in the radio
network model withC ≥ 1 channels. It follows that for everyC ≥ 1, f(n, C) ∈ Ω(log2 n/C).

Proof. Assume for contradiction that there exists a wake-up algorithm A that solves wake-up with high
probability in this setting ino(log2 n/C) rounds for someC. We start by defining a wake-up simulation
strategy (see Section 4) that simulatesA in a network withC channels. In particular, consider theproposal
rule that generateC proposals for each simulated round. In particular, for eachchannelc ∈ [C], it proposes
the ids of the simulated nodes (if any) that broadcast onc in the simulated round. Assume the player uses
the simplereceive rulethat has all simulated nodes receive nothing.

LetPA,C be thek-hitting game player that deploys this simulation strategyfor our fixed value ofC. We
argue thatPA,C solvesk-hitting in f(k, C) · C rounds with high probability. To do so, we first argue that for
a given instance of the hitting game with some target setT , the player is consistent with the target execution
until it applies the receive rule in the first round in which there is a channel on which some node fromT
broadcasts alone, as in all previous rounds and channels, there are either no broadcasters or two or more
broadcasters fromT : both cases in which the receive rule behavior of receiving nothing is correct. (This
event does not necessarily imply that the player’s simulation becomesinconsistent—for example, if a node
from T broadcasts by itself on some channel other than1 with no other nodes fromT present to receive,
the simulation is still consistent—but it holds that beforethis event happens the simulation is definitely
consistent.)

Next, assumeA solves wake-up in roundr of this target execution. This requires a node fromT to
broadcast alone on channel1 in r. It follows that in some roundr′ ≤ r in this target execution some
node fromT broadcasts alone on a channel for the first time. As argued above, our simulation strategy is
consistent with the target execution throughr′ − 1. Therefore, the simulation will make the same broadcast
decisions for nodes in roundr′ as in the target execution. Letc be the smallest channel with a single
broadcaster fromT in r′ of the target execution. When the player makes its proposal for this channel and
this round, it will win the hitting game.
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We assumed thatA solves wake-up inf(n, C) rounds with high probability inn. Combined with
our above argument, it follows that our playerPA,C solvesk-hitting in ≤ f(k, C) · C rounds with high
probability in k. By our assumption, however,f(k, C) ∈ o(log2 k/C) for our fixed value ofC, which
impliesf(k, C) · C ∈ o(log2 k). This contradicts Theorem 3.3.

Lemma 7.2. LetA be an algorithm that solves wake-up with high probability inf(n, C) rounds in the radio
network model withC ≥ 1 channels. It follows that for everyC ≥ 1, f(n, C) ∈ Ω(log n).

Proof. Assume for contradiction that there exists a wake-up algorithm A that solves wake-up with high
probability in this setting ino(log n) rounds for someC. We start by defining a wake-up simulation strategy
(see Section 4) that simulatesA in network withC channels. In particular, consider theproposal rulethat
generates up to two proposals per simulated round: the first proposal includes the ids of every node (if
any) that broadcast in this simulated round (regardless of their channel choice), while the second proposal
includes only the ids of every node (if any) that broadcaston channel1 during this simulated round. Assume
the player uses the simplereceive rulethat has all nodes always receive nothing.

LetPA,C be thek-hitting game player that uses this simulation strategy. Wecannot prove that this player
generates a simulation consistent with the target execution for all possible target sets. For our purposes here,
however, we only need prove that the game is consistent in thespecial case where the size of the target set is
always of size two (clearly, an algorithm that works for all network sizes will work in the special case where
the number of active nodes happens to be two). We will then derive our contradiction with the lower bound
on therestrictedhitting game, which is sufficiently strong to achieve our needed logarithmic result.

In more detail, fix an an instance of the restricted hitting game with some target setT = {i, j}. We
call a round of the target executionmeaningfulif at least one of the two following conditions holds: (1)
exactly one node fromT broadcasts on channel1; (2) exactly one node fromT broadcasts. Notice, these
are not equivalent conditions. If, for example,i broadcasts on channel1 andj on channel2, we satisfy the
first property but not the second. We first argue that the player is consistent with the target execution until
the receive rule is applied in the first meaningful round. To do so, consider the different combinations of
possible behavior fori andj in a non-meaningful round: ifi andj are both silent in a given round of the
target execution, they both receive nothing in the target execution and in the player’s simulation; ifi andj
both broadcast in the target execution, and it is not the casethat exactly one of these two nodes broadcasts
on channel1, then both receive nothing and wake-up is not solved in the target execution as well as in the
simulation.

Assume the target execution eventually generates a meaningful round. Call this roundr. The player
wins the hitting game in roundr. This follows because we argued that the player is consistent with the
target execution throughr − 1. Therefore, it will simulate the same broadcast behavior inr as in the target
execution. Regardless of which case in the definition of meaningful applies inr, one of the proposals for
this round will win the game. Pulling together the pieces, wenote that the algorithmA solves wake-up
(and therefore generates a meaningful round) in this setting in f(n, C) rounds, with high probability inn,
for our fixedC. Therefore, our player solves restrictedk-hitting in no more than2f(k, C) rounds, with
high probability ink. We assumed, however, thatf(n, C) ∈ o(log n). It follows that our player solves
the restricted hitting game in≤ 2(k, C) ∈ o(log k) rounds with high probability ink. This contradicts
Theorem 3.4.

Our main theorem follows directly from Lemma 7.1 and 7.2:

Theorem 7.3. Let A be an algorithm that solves wake-up with high probability inf(n, C) rounds in the
radio network model withC ≥ 1 channels. It follows that for everyC ≥ 1, f(n, C) ∈ Ω(log2 n/C + log n).

Moving on to the expected case, we prove the necessity oflog n/C rounds using the same technique as
in Lemma 7.1:
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Theorem 7.4. Let A be an algorithm that solves wake-up inf(n, C) rounds, in expectation, in the radio
network model withC ≥ 1 channels. It follows that for everyC ≥ 1, f(n, C) ∈ Ω(log n/C + 1).

Proof Idea. We can apply the same wake-up simulation strategy and analysis as in Lemma 7.1. In this case,
we are simply replacinglog2 n with log n, and now deriving our contradiction with Theorem 3.2.

8 Lower Bound for Wake-Up With Collision Detection and Multiple
Channels

The final combination of model parameters to consider for wake-up is collision detectionand multiple
channels. No non-trivial upper or lower bounds are currently known for this case. We rectify this omission
by proving below thatΩ(log n/ log C + log log n) rounds are necessary to solve this problem with high
probability in this setting. Notice, this bound representsan interesting split with the preceding multichannel
results (which assume no collision detection), as the speed-up is now logarithmic inC instead of linear. On
the other hand, thelog2 n term in the previous case is replaced here with a fasterlog n term.

Collision detection, in other words, seems to be powerful enough on its own that adding extra channels
does not yield much extra complexity gains. We do not consider an expected time result for this setting.
This is because evenwithoutcollision detection, the best known upper bound for multichannel networks [7]
approachesO(1) time (which is trivially optimal) quickly as the number of channels increases.

Theorem 8.1. Let A be an algorithm that solves wake-up with high probability inf(n, C) rounds in the
radio network model withC ≥ 1 channels and collision detection. It follows that for everyC ≥ 1, f(n, C) ∈
Ω(log n/ log C + log log n).

Proof. Assume for contradiction that there exists a wake-up algorithm A for this setting that solves the
problemo(log n/ log C + log log n) with high probability inn, for someC ≥ 1.

To achieve our final bound, we will handle both thelog n/ log C and thelog log n term separately.
We begin with thelog n/ log C term. This term is non-trivial only whenC < n, so assume this holds
for the following argument. Consider therestrictedwake-up problem where the adversary guarantees to
activate exactly two nodes. We can construct a new wake-up algorithm,A′, that simulatesA running in a
multichannel network to solve restricted wake-up in a network with collision detection and only asingle
channel. We will then useA′ to solve the hitting game in a manner that generates a contradiction.

In more detail, the two nodes,i′ andj′, runningA′ in an instance of the restricted wake-up problem,
will work together to simulate two nodes,i andj, runningA in a network withC channels. To implement
this simulation,i′ keeps the simulated state ofi andj′ keeps the state ofj. To maintain consistency,i′ and
j′ use agroupof ⌈log C⌉+ 1 rounds to simulate each round ofi andj runningA.

At the beginning of each such group,i′ andj′ advance their simulation ofA just far enough to determine
the channel choice and broadcast behavior ofi andj, respectively. At this point,i′ andj′ must coordinate
their simulation to ensure that they simulate the receive behavior of i andj in this round in a consistent
manner. To do so, in the first round of this group,i′ (resp. j′) broadcasts ifi (resp. j) broadcasts in
this simulated round. If exactly one node broadcasts, wake-up is solved and we are done. If neither node
broadcasts, then both nodes receive and detect nothing (recall, we assumeA′ runs in a setting with a single
channel and collision detection). The two nodes can, at thispoint, simulatei and j also receiving and
detecting nothing, and skip ahead to the next simulated round and group. The interesting case is if both
nodes broadcast. In this case, both nodes detect a collisionin A′. To properly advance the simulation,i′ and
j′ must decide whether or noti andj should also detect a collision—they should ifi andj choose the same
channel in this simulated round, but should not ifi andj choose different channels in this simulated round.

Let ci be the channel chosen byi andcj the channel chosen byj in this simulated round. Letbi be
the binary representation ofci, andbj the binary representation ofcj . Notice, |bi| = |bj | = ⌈log C⌉. To
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determine ifci andcj are equivalent,i′ andj′ spend one round checking each bit inci andcj . In each such
roundk, i′ broadcasts if bitk of bi is 1, andj′ broadcasts if bitk of bj is 1. If bi 6= bj , then during one
of these rounds exactly one node will broadcast, solving wake-up. If the nodes make it through all⌈log C⌉
bits without solving wake-up, then it follows thatci = cj . This knowledge allowsi′ andj′ to conclude their
current simulated round by simulatingi andj both detecting a collision.

It is clear to see thati′ andj′ runningA′ on a single channel with collision detection correctly simu-
late i andj runningA on C channels with collision detection. IfA solves restricted wake-up inf(n, C)
rounds with high probability, thenA′ solves restricted wake-up in≤ g(n, C) = f(n, C) · (⌈log C⌉ + 1)
rounds, with high probability. Recall, however, that we assumedf(n, C) ∈ o(log n/ log C). It follows that
g(n, C) ∈ o(log n). We now have an algorithm,A′, that solves restricted wake-up in a single channel with
collision detection ino(log n) rounds. We can therefore directly apply the simulation strategy argument
from Lemma 7.2 toA′ to prove the existence of a player that solves the restrictedk-hitting game ino(log k)
time, also with high probability. This contradicts Theorem3.4.

We now consider thelog log n term of our lower bound. This term dominates our bound whenC is large
(i.e., C > n/ log n). To begin, as before, assume that some wake-up algorithmA solves the problem in
this setting ino(log log n) rounds for someC. Also as before, we will confine our attention to restricted
wake-up, and construct a single channel algorithmA′ that has two nodesi′ andj′ simulate two nodesi and
j runningA with C channels. In the previous argument, the difficult case in this simulation is wheni andj
both broadcast. To simulate collision detection properly,i′ andj′ must decide whether or noti andj chose
the same channel. To resolve this question, we can no longer directly apply the bit-by-bit approach used
above, because ifC is large this would take too many rounds.

We must instead use the same type ofsimulation treeargument introduced in the proof of Theorem 6.2.
In particular, for each round, there are a constant number ofpossible receive behaviors fori and j. We
can consider a simulation tree that explores all possible such behaviors at the cost of exponentiating the
runtime. If the path in the tree matching the correct receivebehavior solves wake-up, then the simulation
will eventually test this path after no more than2h+1 guesses, whereh is the height. Because we assumeA
solves the problem ino(log log n) rounds, the simulation strategy used byA′ solves it ino(log n) rounds.
As before, we now have a solution to restricted wake-up that solves the problem in a single channel with
collision detection ino(log n) rounds. We obtain our contradiction with Theorem 3.4 in the same manner as
with the first term.

9 Lower Bound for Global Broadcast

We now turn our attention to proving a lower bound for global broadcast. The tight bound for this problem
isΘ(D log (n/D)+ log2 n) rounds for a connected multihop network of sizen with diameterD. The lower
bound holds for expected time solutions and the matching upper bounds hold with high probability [3, 18, 6].
Thelog2 n term was established in [1], where it was shown to hold even for centralized algorithms, and the
D log (n/D) term was later proved by Kushilevitz and Mansour [19]. Below, we apply our new technique
to reprove (and significantly simplify) theΩ(D log (n/D)) lower bound for expected time solutions to
global broadcast. (We do not also reprove theΩ(log2 n) term because this bound is proved using the same
combinatorial result from [1] that provides the mathematical foundation for our technique. To reprove the
result of [1] using [1] is needlessly circular.) Perhaps surprisingly, we show that this bound holds even if
we allow multiple channels and collision detection, both ofwhich are assumptions that break the original
lower bound from [19]. Notice, this indicates a interestingsplit with the wake-up problem for which these
assumptionsimprovethe achievable time complexity.
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Theorem 9.1. LetA be an algorithm that solves global broadcast inf(n, C,D) rounds, in expectation, in
the radio network model with collision detection,C ≥ 1 channels, and a network topology with diameterD.
It follows that for everyC,D ≥ 1, f(n, C,D) ∈ Ω(D log (n/D)).

Proof. To account for the multihop nature of the problem, we introduce a natural generalization of the
hitting games introduced in Section 3. In more detail, the(k, k′)-multi-hitting game, for 1 ≤ k′ ≤ k, is a
variation ofk-hitting game in which we runk′ consecutive instances of the (⌊k/k′⌋)-hitting game, requiring
the player to win instancei ∈ {1, ..., k′ − 1} before proceeding to instancei + 1. There are two technical
points in this definition that aid the below argument: assumethat the referee selects allk′ targets at the
beginning of the game, and assume that the referee reveals tothe player the target for instancei at the end
of the round in which the player wins that instance.

It is straightforward to use the existing bounds from Section 3 to bound this generalization. Consider a
particular instance of this game for a particular playerP. letXi, for i ∈ {1, ..., k′}, be the time required to
win trial i of the game, and letY = X1+X2+ ...+Xk′ be the time required to win the full multi-set game.
Let EP [Xi], for each relevanti, be the expected time forP to win trial i, andEP [Y ] be the expected time
to win the full multi-set game. Imagine that we apply the referee target selection strategy from Theorem 3.2
(our lower bound on the expected time fork-hitting) for each trial in the multi-set hitting game, using
independent randomness to make each selection. For eachXi, i ∈ [k′], it follows from Theorem 3.2 that
regardless ofP ’s definition,EP [Xi] ≥ log ⌊k/k′⌋. We can now lower boundEP [Y ] by leveraging linearity
of expectation:EP [Y ] = EP

[
∑k′

i Xi

]

=
∑k′

i EP [Xi] ≥ k′ log ⌊k/k′⌋.
Having boundedEP [Y ], we can proceed to our main argument. Fix someA that solves global broadcast

in f(n, C,D) rounds, in expectation, in networks of sizen with C channels and diameterD. Fix any valid
values forC andD. We will now prove the existence of a network of diameterD in which A requires
D log (n/D) rounds to solve broadcast in expectation, even when provided C channels and collision detec-
tion. To do so, we deploy a variant of the simulation strategyintroduced in Section 4, that will be used by
a multi-hitting game playerPA,C,D to play the hitting game by simulatingA running in specific diameter
D network withC channels and collision detection. In particular, our player simulatesA on a network
consisting ofD + 1 layers,L1, L2, ..., LD , LD+1, where the firstD layers each include⌊n/D⌋ nodes, and
the last layer includes at least1 node (ifD dividesn evenly, then we can add an extra node to the system
to populateLD+1, without affecting the asymptotic bounds below; otherwisewe add the leftover node(s) to
this last layer). For the sake of construction, for eachLi, assign unique labels from{1, ..., k} to the nodes in
Li. LetTi be the target chosen by the referee for triali of the instance of the multi-hitting game being played
by our player . In our construction, we connectLi andLi+1 by including an edge from every node inLi

with a label corresponding to a value inTi to every node inLi+1. Notice, the player simulating this network
does not knowtheseTi values in advance, and therefore does not know the full topology of the network on
which it is simulatingA, but we will now show this does not matter as the simulation will remain consistent.
Finally, the nodes within each layer are connected as a clique. (Notice that this graph satisfies the unit disk
graph property—strengthening our bound even beyond what isstated in the above theorem to indicate it
holds even if we restrict our attention to unit disk graphs: an easier setting than general graphs.)

The simulation begins with the player choosing some node inL1 as the source. In each roundr of the
simulation, let̂i be the largest value ofi such that the nodes inLi are active (i.e., have the message). Let
Br

î
be the nodes inLî that broadcast inr, if any. If C > 1, let Br

î
be the nodes inLî that broadcast on

the default channel where inactive nodes listen (i.e., channel 1). The player usesBr
î

as its proposal in this
round of the mutli-hitting game. The key insight of this reduction is that the player only needs to simulate
communication betweenLî andLî+1 if exactly one node connectingLî toLî+1 is inBr

î
. When this occurs,

the player will learn of this fact, because its corresponding guess in the hitting game will win this instance of
the game (and once it wins instancei for the first time, it learnsTi, so it can, moving forward, successfully
simulate all future communication between these two layers). The player knows the full topology of all
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smaller layers, so it can always correctly simulate the behavior of nodes broadcasting in these layers as well.
Collision detection and multiple channels break the original proof of [19] because their argument re-

quires that nodes in the same layer receive silence in all rounds before they advance the message. If the
active nodes in a layer had collision detection, for example, they could quickly achieve some communica-
tion using collisions, at which point the argument of [19] fails. Our argument can tolerate such intra-layer
communication as it focuses only on the externally observable (i.e., broadcast) behavior of the layer.

We conclude by noting that the player using this strategy will win the multi-hitting game when the mes-
sage arrives atLD+1. By assumption, this occurs in expected time off(n, C,D) rounds By our above bound
onE[Y ], and the fact thatk corresponds ton andk′ toD, it must follow thatf(n, C,D) ∈ Ω(D log (n/D)),
as needed.
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