Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8802))

Abstract

In recent years, two different approaches for learning register automata have been developed: as part of the LearnLib tool algorithms have been implemented that are based on the Nerode congruence for register automata, whereas the Tomte tool implements algorithms that use counterexample-guided abstraction refinement to automatically construct appropriate mappers. In this paper, we compare the LearnLib and Tomte approaches on a newly defined set of benchmarks and highlight their differences and respective strengths.

The work of Aarts, Kuppens and Vaandrager was supported by STW project 11763 ITALIA: Integrating Testing And Learning of Interface Automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, F.: Tomte: Bridging the Gap between Active Learning and Real-World Systems. PhD thesis, Radboud University Nijmegen (October 2014)

    Google Scholar 

  2. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learning through counterexample guided abstraction refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communication protocols using regular inference with abstraction. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.W.: Generating models of infinite-state communication protocols using regular inference with abstraction. In: Formal Methods in System Design (to appear, 2014)

    Google Scholar 

  5. Aarts, F., Kuppens, H., Tretmans, G.J., Vaandrager, F.W., Verwer, S.: Learning and testing the bounded retransmission protocol. In: Heinz, J., de la Higuera, C., Oates, T. (eds.) Proceedings 11th International Conference on Grammatical Inference (ICGI 2012), University of Maryland, College Park, USA, September 5-8. JMLR Workshop and Conference Proceedings, vol. 21, pp. 4–18 (2012)

    Google Scholar 

  6. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415, pp. 673–686. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Aarts, F., Ruiter, J.D., Poll, E.: Formal models of bank cards for free. In: IEEE International Conference on Software Testing Verification and Validation Workshop, pp. 461–468. IEEE Computer Society, Los Alamitos (2013)

    Google Scholar 

  9. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Computer Science 82(2), 253–284 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical register automaton model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 366–380. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning Extended Finite State Machines. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 250–264. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Chalupar, G., Peherstorfer, S., Poll, E., de Ruiter, J.: Automated reverse engineering using Lego. In: Proceedings 8th USENIX Workshop on Offensive Technologies (WOOT 2014), San Diego, California, IEEE Computer Society, Los Alamitos (2014)

    Google Scholar 

  14. Cho, C.Y., Babic, D., Shin, E.C.R., Song, D.: Inference and analysis of formal models of botnet command and control protocols. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security, pp. 426–439. ACM (2010)

    Google Scholar 

  15. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  16. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Learning fragments of the TCP network protocol. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 78–93. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Grumberg, O., Veith, H. (eds.): 25 Years of Model Checking. LNCS, vol. 5000. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  19. Hagerer, A., Hungar, H.: Model generation by moderated regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press (April 2010)

    Google Scholar 

  21. Howar, F., Giannakopoulou, D., Rakamaric, Z.: Hybrid learning: interface generation through static, dynamic, and symbolic analysis. In: Proc. of ISSTA 2013, pp. 268–279. ACM (2013)

    Google Scholar 

  22. Howar, F., Isberner, M., Steffen, B., Bauer, O., Jonsson, B.: Inferring Semantic Interfaces of Data Structures. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 554–571. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System Design 9(1/2), 41–75 (1996)

    Google Scholar 

  25. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages to program structures. Machine Learning 96(1-2), 65–98 (2014)

    Article  MathSciNet  Google Scholar 

  26. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)

    Article  MATH  Google Scholar 

  27. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation learnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Nerode, A.: Linear automaton transformations. Proceedings of the American Mathematical Society 9(4), 541–544 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  29. Niese, O.: An Integrated Approach to Testing Complex Systems. PhD thesis, University of Dortmund (2003)

    Google Scholar 

  30. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Proceedings FORTE. IFIP Conference Proceedings, vol. 156, pp. 225–240. Kluwer (1999)

    Google Scholar 

  31. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata learning. STTT 11(4), 307–324 (2009)

    Article  Google Scholar 

  32. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  33. Tijssen, M.: Automatic Modeling of SSH Implementations with State Machine Learning Algorithms. Bachelor thesis, ICIS, Radboud University Nijmegen (June 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aarts, F., Howar, F., Kuppens, H., Vaandrager, F. (2014). Algorithms for Inferring Register Automata. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Technologies for Mastering Change. ISoLA 2014. Lecture Notes in Computer Science, vol 8802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45234-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45234-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45233-2

  • Online ISBN: 978-3-662-45234-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics