Skip to main content

Abstract

The paper reviews active automata learning with a particular focus on sources of redundancy. In particular, it gives an intuitive account of TTT, an algorithm based on three tree structures which concisely capture all the required information. This guarantees minimal memory consumption and it drastically reduces the length of membership queries, in particular in application scenarios like monitoring-based learning, where long counter examples arise. The essential steps and the impact of TTT are illustrated via experimentation with LearnLib, a free, open source Java library for active automata learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learning through counterexample guided abstraction refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-32759-9_4

    Chapter  Google Scholar 

  2. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communication protocols using regular inference with abstraction. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415, pp. 673–686. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauer, O., Neubauer, J., Steffen, B., Howar, F.: Reusing System States by Active Learning Algorithms. In: Moschitti, A., Scandariato, R. (eds.) Eternal Systems. CCSE, vol. 255, pp. 61–78. Springer (2012)

    Google Scholar 

  6. Bertolino, A., Calabrò, A., Merten, M., Steffen, B.: Never-Stop Learning: Continuous Validation of Learned Models for Evolving Systems through Monitoring. ERCIM News 2012(88) (2012)

    Google Scholar 

  7. Bossert, G., Hiet, G., Henin, T.: Modelling to Simulate Botnet Command and Control Protocols for the Evaluation of Network Intrusion Detection Systems. In: 2011 Conference on Network and Information Systems Security (SAR-SSI), pp. 1–8 (May 2011)

    Google Scholar 

  8. Hagerer, A., Hungar, H.: Model generation by moderated regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.D.: Efficient regression testing of CTI-systems: Testing a complex call-center solution. Annual review of communication, Int.Engineering Consortium (IEC) 55, 1033–1040 (2001)

    Google Scholar 

  10. Hopcroft, J.E.: An n logn Algorithm for Minimizing States in a Finite Automaton. Tech. rep., Stanford, CA, USA (1971)

    Google Scholar 

  11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation - (2. ed.). Addison-Wesley series in Computer Science. Addison-Wesley-Longman (2001)

    Google Scholar 

  12. Howar, F.: Active Learning of Interface Programs. Ph.D. thesis, TU Dortmund University (2012), http://dx.doi.org/2003/29486

  13. Howar, F., Bauer, O., Merten, M., Steffen, B., Margaria, T.: The Teachers’ Crowd: The Impact of Distributed Oracles on Active Automata Learning. In: Hähnle, R., Knoop, J., Margaria, T., Schreiner, D., Steffen, B. (eds.) ISoLA 2011 Workshops 2011. CCIS, vol. 336, pp. 232–247. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Howar, F., Merten, M., Steffen, B., Margaria, T.: Practical Aspects of Active Automata Learning. In: Formal Methods for Industrial Critical Systems. Wiley-VCH (2012)

    Google Scholar 

  15. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Isberner, M., Howar, F., Steffen, B.: Learning Register Automata: From Languages to Program Structures. Machine Learning 96(1-2), 65–98 (2014), http://dx.doi.org/10.1007/s10994-013-5419-7

    Article  MathSciNet  Google Scholar 

  18. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: A redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Isberner, M., Steffen, B.: An Abstract Framework for Counterexample Analysis in Active Automata Learning. In: Clark, A., Kanazawa, M., Yoshinaka, R. (eds.) Proc. ICGI 2014. JMLR W&CP (to appear, 2014)

    Google Scholar 

  20. Jonsson, B.: Learning of Automata Models Extended with Data. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 327–349. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  22. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based Relevance Filtering for Efficient System-level Test-based Model Generation. Innovations in Systems and Software Engineering 1(2), 147–156 (2005)

    Article  Google Scholar 

  23. Merten, M., Isberner, M., Howar, F., Steffen, B., Margaria, T.: Automated learning setups in automata learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 591–607. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation learnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Nerode, A.: Linear Automaton Transformations. Proceedings of the American Mathematical Society 9(4), 541–544 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peled, D., Vardi, M.Y., Yannakakis, M.: Black Box Checking. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Proc. FORTE 1999, pp. 225–240. Kluwer Academic (1999)

    Google Scholar 

  27. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata learning. Int. J. Softw. Tools Technol. Transf. 11(4), 307–324 (2009)

    Article  Google Scholar 

  28. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407 (2009)

    Article  Google Scholar 

  29. Rivest, R.L., Schapire, R.E.: Inference of Finite Futomata Using Homing Sequences. Inf. Comput. 103(2), 299–347 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shahbaz, M., Shashidhar, K.C., Eschbach, R.: Iterative refinement of specification for component based embedded systems. In: ISSTA 2011, pp. 276–286 (2011)

    Google Scholar 

  31. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Howar, F., Isberner, M., Steffen, B. (2014). Tutorial: Automata Learning in Practice. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Technologies for Mastering Change. ISoLA 2014. Lecture Notes in Computer Science, vol 8802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45234-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45234-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45233-2

  • Online ISBN: 978-3-662-45234-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics