Abstract
Space plasma is a collisionless, multi-scale, and highly nonlinear medium. Thus computer simulations are essential for full understanding of space plasma. In the present study, we develop a high-performance parallel Vlasov (collisionless Boltzmann) simulation code which is the first-principle method for collisionless space plasma. The performance tuning of the code has been made on various supercomputer systems such as the K computer, FX10 and CX400 supercomputer systems. The performance efficiency of more than 15% is achieved on these systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ghizzo, A., Huot, F., Bertrand, P.: A non-periodic 2D semi-Lagrangian Vlasov code for aser-plasma interaction on parallel computer. J. Comput. Phys. 186, 47–69 (2003)
Schmitz, H., Grauer, R.: Kinetic Vlasov simulations of collisionless magnetic reconnection. Phys. Plasmas 13, 092309 (10pp.) (2006)
Idomura, Y., Ida, M., Kano, T., Aiba, N., Tokuda, S.: Conservative global gyrokinetic toroidal full-f five-dimensional Vlasov simulation. Comput. Phys. Commun. 179, 391–403 (2008)
Umeda, T., Fukazawa, K., Nariyuki, Y., Ogino, T.: A scalable full electromagnetic Vlasov solver for cross-scale coupling in space plasma. IEEE Trans. Plasma Sci. 40, 1421–1428 (2012)
Idomura, Y., Nakata, M., Yamada, S., Machida, M., Imamura, T., Watanabe, T., Nunami, M., Inoue, H., Tsutsumi, S., Miyoshi, I., Shida, N.: Communication-overlap techniques for improved strong scaling of gyrokinetic Eulerian code beyond 100k cores on the K-computer. Int. J. High Perform. Comput. Appl. 28, 73–86 (2013)
Umeda, T., Fukazawa, K.: Performance measurement of parallel Vlasov code for space plasma on scalar-type supercomputer systems with large number of cores. In: Tan, G., Yeo, G.K., Turner, S.J., Teo, Y.M. (eds.) AsiaSim 2013. CCIS, vol. 402, pp. 561–569. Springer, Heidelberg (2013)
Shoucri, M., Gagne, R.R.J.: Numerical solution of the vlasov equation by transform methods. J. Comput. Phys. 22, 238–242 (1976)
Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)
Minoshima, T., Matsumoto, Y., Amano, T.: Multi-moment advection scheme for Vlasov simulations. J. Comput. Phy. 230, 6800–6823 (2011)
Umeda, T., Togano, K., Ogino, T.: Structures of diffusion regions in collisionless magnetic reconnection. Phys. Plasmas 17, 052103 (6pp.) (2010)
Zenitani, S., Umeda, T.: Some remarks on the diffusion regions in magnetic reconnection. Phys. Plasmas 21, 034503 (5pp.) (2014)
Umeda, T., Miwa, J., Matsumoto, Y., Nakamura, T.K.M., Togano, K., Fukazawa, K., Shinohara, I.: Full electromagnetic Vlasov code simulation of the Kelvin-Helmholtz instability. Phys. Plasmas 17, 052311 (10pp.) (2010)
Umeda, T., Ueno, S., Nakamura, T.K.M.: Ion kinetic effects to nonlinear processes of the Kelvin-Helmholtz instability. Plasma Phys. Contr. Fusion 56, 075006 (11pp.) (2014)
Umeda, T., Kimura, T., Togano, K., Fukazawa, K., Matsumoto, Y., Miyoshi, T., Terada, N., Nakamura, T.K.M., Ogino, T.: Vlasov simulation of the interaction between the solar wind and a dielectric body. Phys. Plasmas 18, 012908 (7pp.) (2011)
Umeda, T.: Effect of ion cyclotron motion on the structure of wakes: A Vlasov simulation. Earth Planets Space 64, 231–236 (2012)
Umeda, T., Ito, Y.: Entry of solar-wind ions into the wake of a small body with a magnetic anomaly: A global Vlasov simulation. Planet. Space Sci. 93-94, 35–40 (2014)
Umeda, T., Togano, K., Ogino, T.: Two-dimensional full-electromagnetic Vlasov code with conservative scheme and its application to magnetic reconnection. Comput. Phys. Commun. 180, 365–374 (2009)
Umeda, T.: A conservative and non-oscillatory scheme for Vlasov code simulations. Earth Planets Space 60, 773–779 (2008)
Umeda, T., Nariyuki, Y., Kariya, D.: A non-oscillatory and conservative semi-Lagrangian scheme with fourth-degree polynomial interpolation for solving the Vlasov equation. Comput. Phys. Commun. 183, 1094–1100 (2012)
Schmitz, H., Grauer, R.: Comparison of time splitting and backsubstitution methods for integrating Vlasov’s equation with magnetic fields. Comput. Phys. Commun. 175, 86–92 (2006)
Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propagat. AP-14, 302–307 (1966)
High Performance Computing Infrastructure Portal Site, https://www.hpci-office.jp/folders/english
K computer RIKEN Advanced Institute for Computational Science, http://www.kcomputer.jp/en/kcomputer/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Umeda, T., Fukazawa, K. (2014). Performance Tuning of Vlasov Code for Space Plasma on the K Computer. In: Tanaka, S., Hasegawa, K., Xu, R., Sakamoto, N., Turner, S.J. (eds) AsiaSim 2014. AsiaSim 2014. Communications in Computer and Information Science, vol 474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45289-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-662-45289-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45288-2
Online ISBN: 978-3-662-45289-9
eBook Packages: Computer ScienceComputer Science (R0)