Abstract
The parallelism provided by low cost environments as multi-core and GPU processors has encouraged the design of algorithms that can utilize it. In the last time, the GPU approach constitutes an environment of proven successful progress in the implementation of different bio-inspired algorithms without major additional costs of performance. Among these techniques, the Firefly Algorithm (FA) is a recent method based on the flashing light of fireflies. As a population-based algorithm with operations without a high level of divergence, it is well suited as a highly parallelizable model on GPU. In this work we describe the design of a Discrete Firefly Algorithm (GPU-DFA) to solve permutation combinatorial problems. Two well-known permutation optimization problems (Travelling Salesman Problem and DNA Fragment Assembling Problem) were employed in order to test GPU-DFA. We have evaluated numerical efficacy and performance with respect to a CPU-DFA version. Results demonstrate that our algorithm is a fast robust procedure for the treatment of heterogeneous permutation combinatorial problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Applegate, D., Bixby, B., Chvátal, V., Cook, B.: The Traveling Salesman Problem: A Computational Study. Princeton University Press (2007)
Baykasoglu, A., Ozsoydan, F.B.: An improved firefly algorithm for solving dynamic multidimensional knapsack problems. Expert Syst. Appl. 41(8), 3712–3725 (2014)
Bojic, I., Podobnik, V., Ljubi, I., Jezic, G., Kusek, M.: A self-optimizing mobile network: Auto-tuning the network with firefly-synchronized agents. Information Sciences 182(1), 77–92 (2012)
Cano, A., Olmo, J.L., Ventura, S.: Parallel multi-objective ant programming for classification using GPUs. J. Parallel Distr. Com. 73(6), 713–728 (2013)
Chandrasekaran, K., Simon, S.P.: Network and reliability constrained unit commitment problem using binary real coded firefly algorithm. International Journal of Electrical Power & Energy Systems 43(1), 921–932 (2012)
Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel Ant Colony Optimization on Graphics Processing Units. Journal of Parallel and Distributed Computing 73(1), 52–61 (2013), metaheuristics on GPUs
Donald, D. (ed.): Traveling Salesman Problem, Theory and Applications (2011)
Farhoodnea, M., Mohamed, A., Shareef, H., Zayandehroodi, H.: Optimum placement of active power conditioners by a dynamic discrete firefly algorithm to mitigate the negative power quality effects of renewable energy-based generators. International Journal of Electrical Power & Energy Systems 61, 305–317 (2014)
Fister, I.: Jr., I.F., Yang, X.S., Brest, J.: A comprehensive review of firefly algorithms. CoRR abs/1312.6609 (2013)
Gandomi, A., Yang, X.S., Talatahari, S., Alavi, A.: Firefly algorithm with chaos. Comm Nonlinear Sci Numer Simulat 18(1), 89–98 (2013)
GarcÃa-Nieto, J.M., Olivera, A.C., Alba, E.: Optimal cycle program of traffic lights with particle swarm optimization. IEEE Transactions On Evolutionary Computation 17(6), 823–839 (2013)
Guerrero, G., Cecilia, J., Llanes, A., GarcÃa, J., Amos, M., Ujaldón, M.: Comparative evaluation of platforms for parallel ant colony optimization. The Journal of Supercomputing, 1–12 (2014)
Husselmann, A., Hawick, K.: Parallel parametric optimisation with firefly algorithms on graphical processing units. In: Hamid (ed.) 2012 World Congress in Computer Science, Computer Engineering, and Applied Computing (2012)
Jati, G.K., Manurung, R.: Suyanto: Discrete firefly algorithm for traveling salesman problem: A new movement scheme. In: Yang, X.S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M. (eds.) Swarm Intelligence and Bio-Inspired Computation, pp. 295–312. Elsevier, Oxford (2013)
Jati, G.K., Suyanto: Evolutionary discrete firefly algorithm for travelling salesman problem. In: Bouchachia, A. (ed.) ICAIS 2011. LNCS, vol. 6943, pp. 393–403. Springer, Heidelberg (2011)
Johar, F., Azmin, F., Suaidi, M., Shibghatullah, A., Ahmad, B., Salleh, S., Aziz, M., Md Shukor, M.: A review of genetic algorithms and parallel genetic algorithms on Graphics Processing Unit (GPU). In: 2013 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 264–269 (November 2013)
Jones, N.C., Preface, P.A.P.: An Introduction to Bioinformatics Algorithms. Massachusetts Institute of Technology (2004)
Kallrath, J., Schreieck, A.: Discrete optimisation and real-world problems. In: Hertzberger, B., Serazzi, G. (eds.) HPCN-Europe 1995. LNCS, vol. 919, pp. 351–359. Springer, Heidelberg (1995)
Kavousi-Fard, A., Samet, H., Marzbani, F.: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Systems with Applications 41(13), 6047–6056 (2014)
Kessaci, Y., Melab, N., Talbi, E.G.: A pareto-based metaheuristic for scheduling HPC applications on a geographically distributed cloud federation. Cluster Computing 16(3), 451–468 (2013)
Liao, T., Chang, P., Kuo, R., Liao, C.J.: A comparison of five hybrid metaheuristic algorithms for unrelated parallel-machine scheduling and inbound trucks sequencing in multi-door cross docking systems. Appl Soft Comput 21(0), 180–193 (2014)
Luo, G.H., Huang, S.K., Chang, Y.S., Yuan, S.M.: A parallel bees algorithm implementation on {GPU}. Journal of Systems Architecture 60(3), 271–279 (2014), real-Time Embedded Software for Multi-Core Platforms
Van Luong, T., Melab, N., Talbi, E.-G.: GPU-based approaches for multiobjective local search algorithms. A case study: The flowshop scheduling problem. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 155–166. Springer, Heidelberg (2011)
Ma, W., Krishnamoorthy, S., Villa, O., Kowalski, K., Agrawal, G.: Optimizing tensor contraction expressions for hybrid cpu-gpu execution. Cluster Computing 16(1), 131–155 (2013)
Maher, B., et al.: A firefly-inspired method for protein structure prediction in lattice models. Biomhc. 4(1), 56–75 (2014)
Mallén-Fullerton, G.M., Hughes, J.A., Houghten, S., Fernández-Anaya, G.: Benchmark datasets for the DNA fragment assembly problem. International Journal of Bio-Inspired Computation 5(6), 384–394 (2013)
Mezmaz, M., Mehdi, M., Bouvry, P., Melab, N., Talbi, E.G., Tuyttens, D.: Solving the three dimensional quadratic assignment problem on a computational grid. Cluster Computing 17(2), 205–217 (2014)
Minetti, G., Alba, E.: Metaheuristic assemblers of DNA strands: Noiseless and noisy cases. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain, July 18-23, pp. 1–8 (2010)
Neumann, F., Witt, C., Neumann, F., Witt, C.: Combinatorial optimization and computational complexity. In: Bioinspired Computation in Combinatorial Optimization. Natural Computing Series, pp. 9–19. Springer, Heidelberg (2010)
NVIDIA Corporation: NVIDIA CUDA C Programming Guide (June 2011)
Parsons, R., Forrest, S., Burks, C.: Genetic algorithms, operators, and DNA fragment assembly. Machine Learning 21(1-2), 11–33 (1995)
de Paula, L., et al.: Parallelization of a modified firefly algorithm using GPU for variable selection in a multivariate calibration problem. International Journal of Natural Computing Research (IJNCR) 4(1), 31–42 (2014)
Peters, H., Schulz-Hildebrandt, O., Luttenberger, N.: Fast in-place sorting with CUDA based on bitonic sort. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009, Part I. LNCS, vol. 6067, pp. 403–410. Springer, Heidelberg (2010)
Pop, M.: Shotgun sequence assembly. Advances in Computers 60, 193–248 (2004)
Saito, M., Matsumoto, M.: Variants of mersenne twister suitable for graphic processors. ACM Trans. Math. Softw. 12, 1–12 (2013)
Sayadi, M.K., Hafezalkotob, A., Naini, S.G.J.: Firefly-inspired algorithm for discrete optimization problems: An application to manufacturing cell formation. Journal of Manufacturing Systems 32(1), 78–84 (2013)
Stojanovic, N.: The human genome project: software challenges and future directions. In: 2005 ACS / IEEE International Conference on Computer Systems and Applications (AICCSA 2005), Cairo, Egypt, January 3-6, p. 128. IEEE Computer Society (2005)
Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley (2009)
Talbi, E.G., Hasle, G.: Metaheuristics on GPUs. J. Parallel Distrib. Comput. 73(1), 1–3 (2013)
Vidal, P., Alba, E.: Cellular genetic algorithm on graphic processing units. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 223–232. Springer, Heidelberg (2010)
Vidal, P., Luna, F., Alba, E.: Systolic neighborhood search on graphics processing units. Soft Computing 18(1), 125–142 (2014)
Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)
Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)
Yang, X.S., He, X.: Firefly algorithm: Recent advances and applications. Int. J. Swarm Intelligence 1, 36–50 (2013)
Yang, X.S., Hosseini, S.S.S., Gandomi, A.H.: Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl. Soft Comput. 12(3), 1180–1186 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vidal, P., Olivera, A.C. (2014). A Parallel Discrete Firefly Algorithm on GPU for Permutation Combinatorial Optimization Problems. In: Hernández, G., et al. High Performance Computing. CARLA 2014. Communications in Computer and Information Science, vol 485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45483-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-662-45483-1_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45482-4
Online ISBN: 978-3-662-45483-1
eBook Packages: Computer ScienceComputer Science (R0)