Abstract
With the rapid development of Semantic Web, more and more RDF repositories, such as Linking Open Data (LOD), are available on the web. Generally, there are two services provided for exploring those RDF repositories, one is the keyword lookup, and the other is the SPARQL endpoint. Most users choose the lookup service, and millions of web logs have been recorded. Although, users expect to submit more expressive queries than keyword lookup, the complexity of SPARQL undoubtedly scared users away. This paper proposes a method of SPARQL query recommendation for exploring RDF repositories. By analyzing web logs of the lookup service, our method extracts the user access patterns, which will be used to recommend SPARQL queries. We implement our method based on Zhishi.me, a Chinese RDF repository with about 150 million triples as well as over one-year web logs. We believe the proposed method will further facilitate the SPARQL query research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agosti, M., Crivellari, F., Di Nunzio, G.M.: Web log analysis: a review of a decade of studies about information acquisition, inspection and interpretation of user interaction. Data Min. Knowl. Disc. 24(3), 663–696 (2012)
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)
Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)
Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inf. 41(5), 706–716 (2008)
Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web (ldow2008). In: Proceedings of the 17th International Conference on World Wide Web, pp. 1265–1266. ACM (2008)
Bornea, M.A., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P., Udrea, O., Bhattacharjee, B.: Building an efficient RDF store over a relational database. In: Proceedings of the 2013 International Conference on Management of Data, pp. 121–132. ACM (2013)
Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufmann Publishers Inc. (1998)
Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender systems. Knowl. Eng. Rev. 20(3), 315–320 (2005)
Burke, R.: Knowledge-based recommender systems. Encycl. Libr. Inf. Syst. 69(Suppl. 32), 175–186 (2000)
Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)
Chuang, S.L., Chien, L.F.: Enriching web taxonomies through subject categorization of query terms from search engine logs. Decis. Support Syst. 35(1), 113–127 (2003)
Chuang, S.L., Pu, H.T., Lu, W.H., Chien, L.F.: Auto-construction of a live thesaurus from search term logs for interactive web search (poster session). In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 334–336. ACM (2000)
Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Query expansion by mining user logs. IEEE Trans. Knowl. Data Eng. 15(4), 829–839 (2003)
Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Probabilistic query expansion using query logs. In: Proceedings of the 11th International Conference on World Wide Web, pp. 325–332. ACM (2002)
Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. (TOIS) 22(1), 89–115 (2004)
Huang, C.C., Chuang, S.L., Chien, L.F.: Using a web-based categorization approach to generate thematic metadata from texts. ACM Trans. Asian Lang. Inf. Process. (TALIP) 3(3), 190–212 (2004)
Jannach, D., Friedrich, G.: Tutorial: Recommender systems. In: Proceedings of the International Joint Conference on Artificial Intelligence, Barcelona (2011)
McBride, B.: Jena: a semantic web toolkit. IEEE Internet Comput. 6(6), 55–59 (2002)
Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. VLDB J. 19(1), 91–113 (2010)
Nitta, K., Savnik, I.: Survey of RDF storage managers. In: DBKDA 2014, The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications, pp. 148–153 (2014)
Niu, X., Sun, X., Wang, H., Rong, S., Qi, G., Yu, Y.: Zhishi.me - weaving chinese linking open data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 205–220. Springer, Heidelberg (2011)
Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)
Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)
Ricci, F., Cavada, D., Mirzadeh, N., Venturini, A.: Case-based travel recommendations. In: Wober, K.W., Frew, A., Hitz, M. (eds.) Destination Recommendation Systems: Behavioural Foundations and Applications, pp. 67–93. CABI Publishing, Wallingford (2006)
Sakr, S., Al-Naymat, G.: Relational processing of RDF queries: a survey. SIGMOD Rec. 38(4), 23–28 (2010). http://doi.acm.org/10.1145/1815948.1815953
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM (2001)
Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)
Zhang, Z., Nasraoui, O.: Mining search engine query logs for query recommendation. In: Proceedings of the 15th International Conference on World Wide Web, pp. 1039–1040. ACM (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, B. et al. (2014). SPARQL Query Recommendation for Exploring RDF Repositories. In: Zhao, D., Du, J., Wang, H., Wang, P., Ji, D., Pan, J. (eds) The Semantic Web and Web Science. CSWS 2014. Communications in Computer and Information Science, vol 480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45495-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-662-45495-4_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45494-7
Online ISBN: 978-3-662-45495-4
eBook Packages: Computer ScienceComputer Science (R0)