Skip to main content

Dense 3D Reconstruction and Tracking of Dynamic Surface

  • Conference paper
Advances in Image and Graphics Technologies (IGTA 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 437))

Included in the following conference series:

Abstract

This essay addresses the problem of dense 3D reconstruction and tracking of dynamic surface from calibrated stereo image sequences. The primary contribution of this research topic is that a novel framework of 3D reconstruction and tracking of dynamic surface is proposed, where a surface is divided into several blocks and block matching in stereo and temporal images is used instead of matching the whole surface, when all the block correspondences are obtained, a special bilinear interpolation is applied to precisely reconstruct and track the integral surface. Performance is evaluated on challenging ground-truth data generated by 3D max, and then different surface materials, such as fish surface, paper and cloth are used to test the actual effect. The research results demonstrate that this framework is an effective and robust method for dynamic surface reconstruction and tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed, N., Theobalt, C., Rössl, C., Thrun, S., Seidel, H.: Dense Correspondence Finding for Parametrization-free Animation Reconstruction from Video. In: Proceedings of Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  2. Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework. International Journal of Computer Vision 56(3), 221–255 (2004)

    Article  Google Scholar 

  3. Ballan, L., Cortelazzo, G.: Marker-less motion capture of skinned models in a four camera set-up using optical flow and silhouettes. In: Int. Symp. on 3DPVT (2008)

    Google Scholar 

  4. Chai, M., Wang, L., Weng, Y., Jin, X., Zhou, K.: Dynamic hair manipulation in images and videos. To appear in ACM TOG 32, 4 (2013)

    Google Scholar 

  5. De Aguiar, E., Theobalt, C., Stoll, C., Seidel, H.: Marker-less deformable mesh tracking for human shape and motion capture. In: Proc. CVPR (2007)

    Google Scholar 

  6. Doshi, A., Hilton, A., Starck, J.: An empirical study of non-rigid surface feature matching. In: 5th European Conference on Visual Media Production (CVMP 2008), pp. 1–10 (2008)

    Google Scholar 

  7. Furukawa, Y., Ponce, J.: Dense 3d motion capture for human faces. In: Proc. CVPR (2009)

    Google Scholar 

  8. Groeger, M., Ortmaier, T., Sepp, W., Hirzinger, G.: Tracking local motion on the beating heart. In: Proceedings of SPIE, vol. 4681, p. 233 (2002)

    Google Scholar 

  9. Hilsmann, A., Eisert, P.: Tracking deformable surfaces with optical flow in the presence of self occlusions in monocular image sequences. In: CVPR Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment, Anchorage, USA (2008)

    Google Scholar 

  10. Huguet, F., Devernay, F.: A variational method for scene flow estimation from stereo sequences. Research Report 6267

    Google Scholar 

  11. Noce, A., Triboulet, J., Poignet, P., CNRS, M.: Efficient tracking of the heart using texture. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 4480–4483 (2007)

    Google Scholar 

  12. Pekelny, Y., Gotsman, C.: Articulated object reconstruction and markerless motion capture from depth video. In: Computer Graphics Forum, vol. 27, pp. 399–408. Citeseer (2008)

    Google Scholar 

  13. Richa, R., Poignet, P., Liu, C.: Deformable motion tracking of the heart surface. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3997–4003 (2008)

    Google Scholar 

  14. Riviere, C., Gangloff, J., De Mathelin, M.: Robotic compensation of biological motion to enhance surgical accuracy. Proceedings of the IEEE 94(9), 1705–1716 (2006)

    Article  Google Scholar 

  15. Salzmann, M., Hartley, R., Fua, P.: Convex optimization for deformable surface 3-d tracking. In: Proceedings of IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil (2007)

    Google Scholar 

  16. Shen, S., Zheng, Y., Liu, Y.: Deformable Surface Stereo Tracking-by-Detection Using Second Order Cone Programming. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4 (2008)

    Google Scholar 

  17. Shi, J., Chen, Y.Q.: Robust framework for three-dimensional measurement of dynamic deformable surface. Optical Engineering 51(6), 063604-1 (2012)

    Google Scholar 

  18. Shi, J., Liu, Y., Chen, Y.Q.: Method for three-dimensional measurement of dynamic deformable surfaces. Journal of Electronic Imaging 21(3), 033023–1 (2012)

    Google Scholar 

  19. Sminchisescu, C.: 3D Human Motion Analysis in Monocular Video: Techniques and Challenges. Computational Imaging and Vision 36, 185 (2008)

    Article  Google Scholar 

  20. Stoyanov, D., Mylonas, G.P., Deligianni, F., Darzi, A., Yang, G.Z.: Soft-tissue motion tracking and structure estimation for robotic assisted MIS procedures. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 139–146. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. White, R., Crane, K., Forsyth, D.: Capturing and animating occluded cloth. ACM Transactions on Graphics (TOG) 26(3), 34 (2007)

    Article  Google Scholar 

  22. Zhou, K., Gong, M., Huang, X., Guo, B.: Highly parallel surface reconstruction. Tech. Rep. MSR-TR-2008-53, Microsoft Technical Report (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, J., Bai, S., Qian, Q., Pang, L., Wang, Z. (2014). Dense 3D Reconstruction and Tracking of Dynamic Surface. In: Tan, T., Ruan, Q., Wang, S., Ma, H., Huang, K. (eds) Advances in Image and Graphics Technologies. IGTA 2014. Communications in Computer and Information Science, vol 437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45498-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45498-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45497-8

  • Online ISBN: 978-3-662-45498-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics