Skip to main content

Investigation of Genome Parameters and Sub-Transitions to Guide Evolution of Artificial Cellular Organisms

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8602))

Included in the following conference series:

Abstract

Artificial multi-cellular organisms develop from a single zygote to complex morphologies, following the instructions encoded in their genomes. Small genome mutations can result in very different developed phenotypes. In this paper we investigate how to exploit genotype information in order to guide evolution towards favorable areas of the phenotype solution space, where the sought emergent behavior is more likely to be found. Lambda genome parameter, with its ability to discriminate different developmental behaviors, is incorporated into the fitness function and used as a discriminating factor for genetic distance, to keep resulting phenotype’s developmental behavior close by and encourage beneficial mutations that yield adaptive evolution. Genome activation patterns are detected and grouped into genome parameter sub-transitions. Different sub-transitions are investigated as simple genome parameters, or composed to integrate several genome properties into a more exhaustive composite parameter. The experimental model used herein is based on 2-dimensional cellular automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wagner, A.: Robustness and evolvability: a paradox resolved. Proceedings of the Royal Society B - Biological Sciences 275(1630), 91–100 (2008)

    Article  Google Scholar 

  2. Bar-Yam, Y.: Dynamics of complex systems. Studies in Nonlinearity, p. 864. Westview Press (1997)

    Google Scholar 

  3. Miller, J.F.: Evolving developmental programs for adaptation, morphogenesis, and self-repair. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 256–265. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Tufte, G., Haddow, P.C.: Towards development on a silicon-based cellular computation machine. Natural Computation 4(4), 387–416 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Glover, F., Kochenberg, G.A.: Handbook of metaheuristics. International Series on Operations Research and Management Science, p. 570. Springer (2003)

    Google Scholar 

  6. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergant computation. In: Forrest, S. (ed.) Emergent Computation, pp. 12–37. MIT Press (1991)

    Google Scholar 

  7. Tufte, G., Nichele, S.: On the correlations between developmental diversity and genomic composition. In: 13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 1507–1514. ACM (2011)

    Google Scholar 

  8. Nichele, S., Tufte, G.: Genome parameters as information to forecast emergent developmental behaviors. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 186–197. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. de Oliveira, G., de Oliveira, P., Omar, N.: Definition and application of a five-parameter characterization of one-dimensional cellular automata rule space. Artificial Life 7, 277–301 (2001)

    Google Scholar 

  10. de Oliveira, G., de Oliveira, P., Omar, N.: Guidelines for dynamics-based parameterization of one-dimensional cellular automata rule space. Complexity 6(2) (2001)

    Google Scholar 

  11. Kowaliw, T.: Measures of complexity for artificial embryogeny. In: GECCO 2008, pp. 843–850. ACM (2008)

    Google Scholar 

  12. Rothlauf, F.: Locality, distance distortion, and binary representations of integers. Working Paper 11/2003. University of Mannheim

    Google Scholar 

  13. Pollard, T.D.: No question about exciting questions in cell biology. PLoS Biol. 11(12), e1001734 (2013). doi:10.1371/journal.pbio.1001734

    Article  Google Scholar 

  14. Binder, P.M.: Parametric ordering of complex systems. Physical Review E 49(3), 2023–2025 (1994)

    Article  Google Scholar 

  15. Li, W.: Phenomenology of nonlocal cellular automata. Journal of Statistical Physics 68(5–6), 829–882 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Nichele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nichele, S., Wold, H.H., Tufte, G. (2014). Investigation of Genome Parameters and Sub-Transitions to Guide Evolution of Artificial Cellular Organisms. In: Esparcia-Alcázar, A., Mora, A. (eds) Applications of Evolutionary Computation. EvoApplications 2014. Lecture Notes in Computer Science(), vol 8602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45523-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45523-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45522-7

  • Online ISBN: 978-3-662-45523-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics