Skip to main content

Optimizing AEDB Broadcasting Protocol with Parallel Multi-objective Cooperative Coevolutionary NSGA-II

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2014)

Abstract

Due to the highly unpredictable topology of ad hoc networks, most of the existing communication protocols rely on different thresholds for adapting their behavior to the environment. Good performance is required under any circumstances. Therefore, finding the optimal configuration for those protocols and algorithms implemented in these networks is a complex task. We propose in this work to automatically fine tune the AEDB broadcasting protocol for MANETs thanks to the use of cooperative coevolutionary multi-objective evolutionary algorithms. AEDB is an advanced adaptive protocol based on the Distance Based broadcasting algorithm that acts differently according to local information to minimize the energy and network use, while maximizing the coverage of the broadcasting process. In this work, it will be fine tuned using multi-objective techniques in terms of the conflicting objectives: coverage, energy and network resources, subject to a broadcast time constraint. Because of the few parameters of AEDB, we defined new versions of the problem in which variables are discretized into bit-strings, making it more suitable for cooperative coevolutionary algorithms. Two versions of the proposed method are evaluated and compared versus the original NSGA-II, providing highly accurate tradeoff configurations in shorter execution times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdou, W., Henriet, A., Bloch, C., Dhoutaut, D., Charlet, D., Spies, F.: Using an evolutionary algorithm to optimize the broadcasting methods in mobile ad hoc networks. Journal of Network and Computer Applications 34, 1794–1804 (2011)

    Article  Google Scholar 

  2. Alba, E., Bouvry, P., Dorronsoro, B., Luna, F., Nebro, A.J.: A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs. In: Nature Inspired Distributed Computing (NIDISC), p. 192b (2005)

    Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evol. Comp. 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Dorronsoro, B., Danoy, G., Bouvry, P., Nebro, A.J.: Multi-objective Cooperative Coevolutionary Evolutionary Algorithms for Continuous and Combinatorial Optimization. In: Bouvry, P., González-Vélez, H., Kołodziej, J. (eds.) Intelligent Decision Systems in Large-Scale Distributed Environments. SCI, vol. 362, pp. 49–74. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Dorronsoro, B., Danoy, G., Nebro, A.J., Bouvry, P.: Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution. Computers & Operations Research 40(6), 1552–1563 (2013)

    Article  MathSciNet  Google Scholar 

  6. Dorronsoro, B., Ruiz, P., Danoy, G., Pigné, Y., Bouvry, P.: Evolutionary Algorithms for Mobile Ad Hoc Networks. Wiley/IEEE Computer Society (2014)

    Google Scholar 

  7. Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: Solving Three-Objective Optimization Problems Using a New Hybrid Cellular Genetic Algorithm. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 661–670. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Garc\’ıa-Nieto, J., Alba, E.: Automatic Parameter Tuning with Metaheuristics of the AODV Routing Protocol for Vehicular Ad-Hoc Networks. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010, Part II. LNCS, vol. 6025, pp. 21–30. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Groenevelt, R., Altman, E., Nain, P.: Relaying in mobile ad hoc networks: The brownian motion mobility model. J. of Wireless Networks, 561–571 (2006)

    Google Scholar 

  10. Hsiao, P.-C., Chiang, T.-C., Fu, L.-C.: Particle swarm optimization for the minimum energy broadcast problem in wireless ad-hoc networks. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2012)

    Google Scholar 

  11. Ni, S., Tseng, Y., Chen, Y., Sheu, J.: The broadcast storm problem in a mobile ad hoc network. In: Conf. on Mobile Comp. and Networking, pp. 151–162 (1999)

    Google Scholar 

  12. Ruiz, P., Bouvry, P.: Distributed energy self-adaptation in ad hoc networks. In: Proc. of IEEE Int. Workshop on Management of Emerging Networks and Services (MENS), in Conjunction with IEEE Globecom, pp. 539–543 (2010)

    Google Scholar 

  13. Ruiz, P., Dorronsoro, B., Bouvry, P.: Finding scalable configurations for AEDB broadcasting protocol using multi-objective evolutionary algorithms. Cluster Computing 16(3), 527–544 (2013)

    Article  Google Scholar 

  14. Toutouh, J., Nesmachnow, S., Alba, E.: Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm. Cluster Computing 16(3), 435–450 (2013)

    Article  Google Scholar 

  15. Wolf, S., Merz, P.: Evolutionary Local Search for the Minimum Energy Broadcast Problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 61–72. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernabé Dorronsoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dorronsoro, B., Ruiz, P., Talbi, EG., Bouvry, P., Piyatumrong, A. (2014). Optimizing AEDB Broadcasting Protocol with Parallel Multi-objective Cooperative Coevolutionary NSGA-II. In: Esparcia-Alcázar, A., Mora, A. (eds) Applications of Evolutionary Computation. EvoApplications 2014. Lecture Notes in Computer Science(), vol 8602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45523-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45523-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45522-7

  • Online ISBN: 978-3-662-45523-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics