Abstract
It is still a fundamental task to segment objects out from diverse background. To tackle this task, we propose a transferring segmentation framework, which aims to automatically segment new images when a single segmented example is given. Our segmentation approach is developed under the observation that some regions of foreground and background are often very similar but rarely share similar contextual information. To this end, we propose to construct a contextual dictionary by incorporating neighboring information as context. The segmentation task is finally accomplished in way of supervised classification via sparse representation with the constructed contextual dictionary. Experimental results on diverse natural images demonstrate that the proposed method achieves favorable results in both visual quality and accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE TPAMI 22(8), 888–905 (2000)
Xiang, S., Pan, C., Nie, F., et al.: Interactive image segmentation with multiple linear reconstructions in Windows. IEEE Transactions on Multimedia 13(2), 342–352 (2011)
Packer, B., Gould, S., Koller, D.: A unified contour-pixel model for figure-ground segmentation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 338–351. Springer, Heidelberg (2010)
Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: ICCV, pp. 105–112 (2001)
Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics (TOG) 23(3), 309–314 (2004)
Xiang, S., Nie, F., Zhang, C.: Semi-supervised classification via local spline regression. IEEE TPAMI 32(11), 2039–2053 (2010)
Rother, C., Minka, T., Blake, A., et al.: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs. In: CVPR, pp. 993–1000 (2006)
Dai, J., Wu, Y., Zhou, J., et al.: Cosegmentation and Cosketch by Unsupervised Learning. In: ICCV, pp. 1305–1312 (2013)
Yuan, H., Lu, Y., et al.: Sparse representation using contextual information for hyperspectral image classification. In: IEEE International Conference on Cybernetics, pp. 138–143 (2013)
Fang, L., Li, S., et al.: Spectral-Spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Transactions on Geoscience and Remote Sensing 52(12), 7738–7749 (2014)
Wright, J., Yang, A.Y., Ganesh, A., et al.: Robust face recognition via sparse representation. IEEE TPAMI 22(8), 210–227 (2009)
Zhang, Q., Li, B.: Discriminative K-SVD for dictionary learning in face recognition. In: CVPR, pp. 2691–2698 (2010)
Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE TPAMI 34(11), 2274–2282 (2012)
Xiang, S., Pan, C., Nie, F., Zhang, C.: Turbopixel segmentation using eigen-images. TIP 19(11), 3024–3034 (2010)
Image and Visual Representation Group, http://ivrg.epfl.ch/research/superpixels
Osborne, M.R., Presnell, B., Turlach, B.A.: A new approach to variable selection in least squares problems. IMA Journal of Numerical Analysis 20(3), 389–403 (2000)
L1 Homotopy: A MATLAB Toolbox for Homotopy Algorithms in L1 Norm Minimization Problems, http://users.ece.gatech.edu/~sasif/homotopy/index.html
Batra, D., Kowdle, A., Parikh, D., et al.: Icoseg: Interactive co-segmentation with intelligent scribble guidance. In: CVPR, pp. 3169–3176 (2010)
Advanced Multimedia Processing (AMP) Lab, http://chenlab.ece.cornell.edu/projects/touch-coseg/
National Center for Biotechnology Information, http://www.robots.ox.ac.uk/~vgg/data/flowers/
Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM TIST 2(3), 27:1–27:27 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, S., He, Y., Xiang, S., Wang, L., Pan, C. (2014). Transferring Segmentation from Image to Image via Contextual Sparse Representation. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45643-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-662-45643-9_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45642-2
Online ISBN: 978-3-662-45643-9
eBook Packages: Computer ScienceComputer Science (R0)