Skip to main content

Training Deep Belief Network with Sparse Hidden Units

  • Conference paper
Pattern Recognition (CCPR 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 483))

Included in the following conference series:

  • 5109 Accesses

Abstract

In this paper, we proposed a framework to train Restricted Boltzmann Machine (RBM) which is the basic block for Deep Belief Network (DBN). By introducing sparsity constraint to the Contrastive Divergence algorithm (CD algorithm), we trained RBMs with better performance than the off-the-shelf model in MNIST handwritten digit data set. The sparse model suffer from saturation slightly, however, by using a trade-off coefficient, the saturation problem can be solved well. To our knowledge, the sparsity constraint was first introduced to the hidden units of RBM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report, DTIC Document (1985)

    Google Scholar 

  2. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  3. Lee, H., Ekanadham, C., Ng, A.: Sparse deep belief net model for visual area v2. In: Advances in Neural Information Processing Systems, vol. 20, pp. 873–880 (2008)

    Google Scholar 

  4. Le, Q., Monga, R., Devin, M., Corrado, G., Chen, K., Ranzato, M., Dean, J., Ng, A.: Building high-level features using large scale unsupervised learning. arXiv preprint arXiv:1112.6209 (2011)

    Google Scholar 

  5. Osadchy, M., Cun, Y., Miller, M.: Synergistic face detection and pose estimation with energy-based models. The Journal of Machine Learning Research 8, 1197–1215 (2007)

    Google Scholar 

  6. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep neural networks. In: Proc. Interspeech, pp. 437–440 (2011)

    Google Scholar 

  7. Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., et al.: Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine (2012)

    Google Scholar 

  8. Lee, H., Largman, Y., Pham, P., Ng, A.: Unsupervised feature learning for audio classification using convolutional deep belief networks. In: Advances in Neural Information Processing Systems, vol. 22, pp. 1096–1104 (2009)

    Google Scholar 

  9. Hamel, P., Eck, D.: Learning features from music audio with deep belief networks. In: 11th International Society for Music Information Retrieval Conference, ISMIR 2010 (2010)

    Google Scholar 

  10. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Computation 18(7), 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chappell, M., Humphreys, M.S.: An auto-associative neural network for sparse representations: Analysis and application to models of recognition and cued recall. Psychological Review 101(1), 103 (1994)

    Article  Google Scholar 

  13. Bengio, Y.: Learning deep architectures for ai. Foundations and Trends® in Machine Learning 2(1), 1–127 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, Z., Hu, W., Zhang, C. (2014). Training Deep Belief Network with Sparse Hidden Units. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45646-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45646-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45645-3

  • Online ISBN: 978-3-662-45646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics