Skip to main content

A SVM Method Trained by Improved Particle Swarm Optimization for Image Classification

  • Conference paper
Pattern Recognition (CCPR 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 483))

Included in the following conference series:

  • 5074 Accesses

Abstract

As an important classification method, SVM has been widely used in different fields. But it is still a problem how to choose the favorable parameters of SVM. For optimizing the parameters and increasing the accuracy of SVM, this paper proposed an improved quantum behaved particle swarm algorithm based on a mutation operator (MQPSO). The new operator is used for enhancing the global search ability of particle. We test SVM based on MPSO method on solving the problem of image classification. Result shows our algorithm is quite stable and gets higher accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vapnik, V.: The nature of statistical learning theory. Springer (2000)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4(2), pp. 1942–1948 (1995)

    Google Scholar 

  3. Everingham, M., Van Gool, L., Williams, C.K.I., et al.: The pascal visual object classes (voc) challenge. International Journal of Computer Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  4. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)

    Google Scholar 

  5. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  6. Li, L.J., Fei-Fei, L.: What, where and who? classifying events by scene and object recognition. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  7. Tang, Y., Zhang, Y.Q., Chawla, N.V., et al.: SVMs modeling for highly imbalanced classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(1), 281–288 (2009)

    Article  Google Scholar 

  8. Zhou, Z.H., Liu, X.Y.: On Multi-Class Cost-Sensitive Learning. Computational Intelligence 26(3), 232–257 (2010)

    Article  MathSciNet  Google Scholar 

  9. Van Den Bergh, F., Engelbrecht, A.P.: Training product unit networks using cooperative particle swarm optimisers. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2001, vol. 1, pp. 126–131. IEEE (2001)

    Google Scholar 

  10. Yang, S., Wang, M., Jiao, L.: A quantum particle swarm optimization. In: Congress on Evolutionary Computation, CEC 2004, vol. 1, pp. 320–324. IEEE (2004)

    Google Scholar 

  11. Sun, J., Xu, W., Feng, B.: Adaptive parameter control for quantum-behaved particle swarm optimization on individual level. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3049–3054. IEEE (2005)

    Google Scholar 

  12. Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE Transactions on Neural Networks 10(5), 1055–1064 (1999)

    Article  Google Scholar 

  13. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  14. Yang, Y., Newsam, S.: Spatial pyramid co-occurrence for image classification. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1465–1472. IEEE (2011)

    Google Scholar 

  15. Dixit, M., Rasiwasia, N., Vasconcelos, N.: Adapted gaussian models for image classification. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 937–943. IEEE (2011)

    Google Scholar 

  16. Huang, Y., Huang, K., Yu, Y., et al.: Salient coding for image classification. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1753–1760. IEEE (2011)

    Google Scholar 

  17. Liu, L., Wang, L., Liu, X.: In defense of soft-assignment coding. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2486–2493. IEEE (2011)

    Google Scholar 

  18. Boureau, Y.L., Bach, F., LeCun, Y., et al.: Learning mid-level features for recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2559–2566. IEEE (2010)

    Google Scholar 

  19. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  20. Kobayashi, T.: BFO Meets HOG: Feature Extraction Based on Histograms of Oriented pdf Gradients for Image Classification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 747–754. IEEE (2013)

    Google Scholar 

  21. Yang, J., Yu, K., Gong, Y., et al.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1794–1801. IEEE (2009)

    Google Scholar 

  22. Zhang, H., Berg, A.C., Maire, M., et al.: SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2126–2136. IEEE (2006)

    Google Scholar 

  23. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  24. Jain, P., Kulis, B., Grauman, K.: Fast image search for learned metrics. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  25. van Gemert, J.C., Geusebroek, J.-M., Veenman, C.J., Smeulders, A.W.M.: Kernel codebooks for scene categorization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 696–709. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 524–531. IEEE (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qian, Q., Gao, H., Wang, B. (2014). A SVM Method Trained by Improved Particle Swarm Optimization for Image Classification. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45646-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45646-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45645-3

  • Online ISBN: 978-3-662-45646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics