Skip to main content

Face Liveness Detection by Brightness Difference

  • Conference paper
  • First Online:
Machine Learning and Cybernetics (ICMLC 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 481))

Included in the following conference series:

  • 1683 Accesses

Abstract

This paper proposes a method to detect face liveness against video replay attack. The live persons are distinguished from and video reply attack by analyzing the brightness difference on the face and background. By taking photos with/without a flashlight, the brightness differences of the face are compared with the one of the background. The live person and the attack should have different brightness differences. The accuracy on the liveness detection using the proposed model is satisfying in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  1. Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics, vol. 6. Springer (2006)

    Google Scholar 

  2. Schuckers, S.: Spoofing and Anti-Spoofing Measures. Information Security Technical Report 7(4), 56–62 (2002)

    Article  Google Scholar 

  3. Pan, G., Sun, L., Wu, Z., Lao, S.: Eyeblink-based Anti-Spoofing in Face Recognition from a Generic Webcamera. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  4. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 4(7), 971–987 (2002)

    Article  Google Scholar 

  5. Haralick, R., Shanmugam, K., Dinstein, I.: Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics 3(6), 610–621 (1973)

    Article  Google Scholar 

  6. de Pereira, T.F., Anjos, A., De Martino, J.M., Marcel, S.: LBP-TOP Based Countermeasure against Face Spoofing Attacks. Computer Vision with Local Binary Pattern Variants- ACCV, pp. 121–132 (2012)

    Google Scholar 

  7. Wu, H.-Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman. Eulerian, W.T.: Video Magnification for Revealing Subtle Changes in the World. ACM Transactions on Graphics 31(4) (2012)

    Google Scholar 

  8. Zhang, Z., Yi, D., Lei, Z., Li, S.Z.: Face Liveness Detection by Learning Multispectral Reflectance Distributions. In: IEEE Automatic Face & Gesture Recognition and Workshops, pp. 436–441 (2011)

    Google Scholar 

  9. Chakka, M.M., Anjos, A., Marcel, S., Tronci, R., Muntoni, D., Fadda, G., Pili, M., Sirena, N., Murgia, G., Ristori, M., Roli, F., Yan, J., Yi, D., Lei, Z., Zhang, Z., Li, Z.S., Schwartz, W.R., Rocha, A., Pedrini, H., Navarro, L.J., Santana, C.-M., Määttä, J., Hadid, A., Pietikäinen, M.: Competition on Counter Measures to 2-D Facial Spoofing Attacks. In: IEEE International Joint Conference on Biometrics, pp. 1–6 (2011)

    Google Scholar 

  10. Bao, W., Li, H., Li, N., Jiang, W.: A Liveness Detection Method for Face Recognition Based on Optical Flow Field, Image Analysis and Signal Processing, pp. 233–236 (2009)

    Google Scholar 

  11. Komulainen, J., Hadid, A., Pietikäinen, M.: Face Spoofing Detection Using Dynamic Texture. In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part I. LNCS, vol. 7728, pp. 146–157. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Anjos, A., Marcel, S.: Counter-Measures to Photo Attacks in Face Recognition: A Public Database and a Baseline. In: IEEE International Joint Conference on Biometrics, pp. 1–7 (2011)

    Google Scholar 

  13. Nilsson, M., Nordberg, J.: ClaessonI.. Face Detection Using Local SMQT Features and Split upSnow Classifier. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 589–592 (2007)

    Google Scholar 

  14. Rafael C., Gonzalez, R.E.: Digital Image Processing. Prentice Hall PTR (2002)

    Google Scholar 

  15. Li, J., Wang, Y., Tan, T., Jain, A.K.: Live Face Detection Based on the Analysis of Fourier Spectra, Defense and Security. International Society for Optics and Photonics, pp. 296–303 (2004)

    Google Scholar 

  16. Marcialis, G.L., Lewicke, A., Tan, B., Coli, P., Grimberg, D., Congiu, A., Tidu, A., Roli, F., Schuckers, S.: First International Fingerprint Liveness Detection Competition–-LivDet 2009. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 12–23. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Toth, B.: Biometric Liveness Detection. Information Security. Bulletin 10(8), 291–297 (2005)

    Google Scholar 

  18. Jain, A., Hong, L., Pankanti, S.: Biometric Identification. Communication of ACM 43(2), 90–98 (2000)

    Article  Google Scholar 

  19. Nilsson, M., Mattias D., Ingvar, C.: The Successive Mean Quantization Transform. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 429–432 (2005)

    Google Scholar 

  20. Yang, M.-H., Roth, D., Ahuja, N.: A Snow-Based Face Detector. Neural Information Processing System 12, 855–851 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Shu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, P.P.K., Shu, Y. (2014). Face Liveness Detection by Brightness Difference. In: Wang, X., Pedrycz, W., Chan, P., He, Q. (eds) Machine Learning and Cybernetics. ICMLC 2014. Communications in Computer and Information Science, vol 481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45652-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45652-1_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45651-4

  • Online ISBN: 978-3-662-45652-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics