Skip to main content

Multiresolution Feature Extraction During Psychophysiological Inference: Addressing Signals Asynchronicity

  • Conference paper
  • First Online:
Physiological Computing Systems (PhyCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8908))

Included in the following conference series:

Abstract

Predicting the psychological state of the user using physiological measures is one of the main objectives of physiological computing. While numerous works have addressed this task with great success, a large number of challenges remain to be solved in order to develop recognition approaches that can precisely and reliably feed human-computer interaction systems. This chapter focuses on one of these challenges which is the temporal asynchrony between different physiological signals within one recognition model. The chapter proposes a flexible and suitable method for feature extraction based on empirical optimisation of windows’ latency and duration. The approach is described within the theoretical framework of the psychophysiological inference and its common implementation using machine learning. The method has been experimentally validated (46 subjects) and results are presented. Empirically optimised values for the extraction windows are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellsworth, P.C.: William James and emotion: Is a century of fame worth a century of misunderstanding? Psychol. Rev. 101(2), 222–229 (1994)

    Article  Google Scholar 

  2. Allanson, J., Fairclough, S.H.: A research agenda for physiological computing. Interact. Comput. 16(5), 857–878 (2004)

    Article  Google Scholar 

  3. Cacioppo, J.T., Tassinary, L.G.: Inferring psychological significance from physiological signals. Am. Psychol. 45(1), 16–28 (1990)

    Article  Google Scholar 

  4. Cacioppo, J.T., Tassinary, L.T., Berntson, G., et al.: Psychophysiological science: interdisciplinary approaches to classic questions about the mind. In: Cacioppo, J.T., Tassinary, L.G., Berntson, G. (eds.) Handbook of Psychophysiology, pp. 1–18. Cambride University Press, New York (2007)

    Chapter  Google Scholar 

  5. Kreibig, S.D.: Autonomic nervous system activity in emotion: a review. Biol. Psychol. 84(3), 394–421 (2010)

    Article  Google Scholar 

  6. Bamidis, P., et al.: An integrated approach to emotion recognition for advanced emotional intelligence. In: Jacko, J. (ed.) Human-Computer Interaction. Ambient, Ubiquitous and Intelligent Interaction, pp. 565–574. Springer, Berlin (2009)

    Chapter  Google Scholar 

  7. Chanel, G., et al.: Short-term emotion assessment in a recall paradigm. Int. J. Hum Comput Stud. 67(8), 607–627 (2009)

    Article  Google Scholar 

  8. Christie, I.C., Friedman, B.H.: Autonomic specificity of discrete emotion and dimensions of affective space: a multivariate approach. Int. J. Psychophysiol. 51(2), 143–153 (2004)

    Article  Google Scholar 

  9. Haag, A., Goronzy, S., Schaich, P., Williams, J.: Emotion recognition using bio-sensors: first steps towards an automatic system. In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.) ADS 2004. LNCS (LNAI), vol. 3068, pp. 36–48. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Kolodyazhniy, V., et al.: An affective computing approach to physiological emotion specificity: toward subject-independent and stimulus-independent classification of film-induced emotions. Psychophysiology 48(7), 908–922 (2011)

    Article  Google Scholar 

  11. Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1175 (2001)

    Article  Google Scholar 

  12. Verhoef, T., et al.: Bio-sensing for emotional characterization without word labels. In: Jacko, J. (ed.) Human-Computer Interaction. Ambient, Ubiquitous and Intelligent Interaction, pp. 693–702. Springer, Berlin (2009)

    Chapter  Google Scholar 

  13. van den Broek, E., et al.: Prerequisites for affective signal processing (ASP) - Part III. In: Third International Conference on Bio-Inspired Systems and Signal Processing, Biosignals 2010. Valencia, Spain (2010)

    Google Scholar 

  14. van den Broek, E., et al.: Prerequisites for affective signal processing (ASP). In: International Conference on Bio-inspired Systems and Signal Processing. INSTICC Press, Portugal (2009)

    Google Scholar 

  15. van den Broek, E., et al.: Prerequisites for affective signal processing (ASP) - Part IV. In: 1st International Workshop on Bio-Inspired Human-Machine Interfaces and Healthcare Applications - B-Interface 2010, pp. 59–66. Valencia, Spain 2010

    Google Scholar 

  16. Cowie, R., et al.: Issues in data collection. In: Cowie, R., Pelachaud, C., Petta, P. (eds.) Emotion-Oriented Systems, pp. 197–212. Springer, Berlin (2011)

    Chapter  Google Scholar 

  17. Pizzagalli, D.A., et al.: Electoencephalography and high-density electrophysiological source localisation. In: Cacioppo, J.T., Tassinary, L.G., Bernston, G.G. (eds.) Handbook of Psychophysiology, pp. 56–84. Cambride University Press, New York (2007)

    Chapter  Google Scholar 

  18. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  19. Rani, P., et al.: An empirical study of machine learning techniques for affect recognition in human–robot interaction. Pattern Anal. Appl. 9(1), 58–69 (2006)

    Article  MathSciNet  Google Scholar 

  20. Zhihong, Z., et al.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009)

    Article  Google Scholar 

  21. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  22. Kim, J., Elesabeth, A., Thurid, V.: Towards user-independent classification of multimodal emotional signals. In: 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops (ACII 2009) (2009)

    Google Scholar 

  23. AlZoubi, O., D’Mello, S.K., Calvo, R.A.: Detecting naturalistic expressions of nonbasic affect using physiological signals. IEEE Trans. Affect. Comput. 3(3), 298–310 (2012)

    Article  Google Scholar 

  24. Schuster, T., et al.: EEG-based valence recognition: what do we know about the influence of individual specificity? In: The Fourth International Conference on Advanced Cognitive Technologies and Applications (COGNITIVE 2012). Nice, France (2012)

    Google Scholar 

  25. Wilder, J.: Modern psychophysiology and the law of initial value. Am. J. Psychother. 12, 199–221 (1958)

    Google Scholar 

  26. Jennings, L.R., Gianaros, P.J., et al.: Methodology. In: Cacioppo, J.T., Tassinary, L.G., Bernston, G.G. (eds.) Handbook of Psychophysiology, pp. 812–833. Cambride University Press, New York (2007)

    Chapter  Google Scholar 

  27. Gunes, H., Pantic, M.: Automatic Measurement of Affect in Dimensional and Continuous Spaces: Why, What, and How?. In: Spink, A.J., et al. (eds.) 7th International Conference on Methods and Techniques in Behavioral Research, Measuring Behavior 2010, pp. 122–126. Noldus, Eindhoven (2010)

    Google Scholar 

  28. van der Zwaag, M.D., van den Broek, E., Janssen, J.H.: Guidelines for biosignal driven HCI. In: ACM CHI2010 workshop - Brain, Body, and Bytes: Physiological User Interaction. Atlanta, GA, USA (2010)

    Google Scholar 

  29. Coan, J.A., Allen, J.J.B.: Frontal EEG asymmetry as a moderator and mediator of emotion. Biol. Psychol. 67(1–2), 7–50 (2004)

    Article  Google Scholar 

  30. Lang, P.J., Bradley, M.M., Cuthbert, B.N: International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical report B-3. 2008, University of Florida, Gainesville, FI (2008)

    Google Scholar 

  31. Bradley, M.M., Lang, P.J.: The International Affective Digitized Sounds (2nd edn., IADS-2): Affective Ratings of Sounds and Instruction Manual. Technical report B-3, University of Florida, Gainesville, FI (2007)

    Google Scholar 

  32. Anttonen, J., Surakka, V.: Emotions and heart rate while sitting on a chair. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 491–499. ACM, Portland (2005)

    Google Scholar 

  33. Mühl, C., Heylen, D.: Cross-modal elicitation of affective experience. In: International Conference on Affective Computing and Intelligent Interaction and Workshops (ACII 2009). Workshop on Affective Brain-Computer Interfaces. Amsterdam, The Netherlands (2009)

    Google Scholar 

  34. Bradley, M.M., Lang, P.J.: Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994)

    Article  Google Scholar 

  35. van den Broek, E.: Ubiquitous emotion-aware computing. Pers. Ubiquit. Comput. 17, 1–15 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by NSERC (Natural Sciences and Engineering Research Council of Canada), the Canadian Space Agency and Bell Canada. The authors would like to thank the Bell Web Solutions User Experience Center for providing the eye-tracker system used in this research. We also wish to thank Laurence Dumont for early comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Courtemanche .

Editor information

Editors and Affiliations

Appendix

Appendix

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Courtemanche, F., Dufresne, A., LeMoyne, É.L. (2014). Multiresolution Feature Extraction During Psychophysiological Inference: Addressing Signals Asynchronicity. In: da Silva, H., Holzinger, A., Fairclough, S., Majoe, D. (eds) Physiological Computing Systems. PhyCS 2014. Lecture Notes in Computer Science(), vol 8908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45686-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45686-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45685-9

  • Online ISBN: 978-3-662-45686-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics