Skip to main content

Synthesis of Reversible Circuits Based on EXORs of Products of EXORs

  • Chapter
  • First Online:
Transactions on Computational Science XXIV

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8911))

Abstract

This paper introduces a new concept of reversible circuits based on EXOR-sum of Products-of-EXOR-sums (EPOE). Two algorithms are introduced that synthesize reversible functions using these new EPOE structures. The motivation for this work is to reduce the number of multiple controlled Toffoli gates and their number of inputs. To achieve these reductions the paper generalizes from existing 2-level AND-EXOR structures (ESOP) commonly used in reversible logic to a mixture of 3-level EXOR-AND-EXOR structures and ESOPs. Our approach can be applied to reversible and permutative quantum circuits to synthesize single output functions with one ancilla line. In addition, a variant of the algorithm with garbage lines is presented. A comparison of the ESOP minimizer EXORCISM-4 and variants of the new EPOE minimizer, called EPOEM-1s and EPOEM-1f, is presented. The results show that EPOE circuits do in fact achieve the above-stated cost reductions, in particular when expressed in terms of Maslov’s quantum cost model commonly used in quantum circuit synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A quantum permutative function is a binary reversible function where binary gates such as Toffoli and Feynman are internally realized with quantum primitives such as Controlled-V. The costs for reversible circuits and quantum permutative circuits differ considerably. This difference affects the choice of the structures to which functions are mapped and their respective synthesis algorithms.

  2. 2.

    There are different definitions of quantum cost. For instance, cost can be set to the number of primitive two-qubit quantum gates from which reversible gates like multiple controlled Toffoli are used [19]. Alternatively cost can be the total number of quantum pulses to realize the circuit.

References

  1. Alhagi, N.: Synthesis of reversible functions using various gate libraries and design specifications. Ph.D. dissertation, Department of Electrical and Computer Engineering, Portland State University (2010)

    Google Scholar 

  2. Alhagi, N., Hawash, M., Perkowski, M.A.: Synthesis of reversible circuits with no ancilla bits for large reversible functions specified with bit equations. In: 40th IEEE International Symposium on Multiple-Valued Logic, pp. 39–45 (2010)

    Google Scholar 

  3. Alhagi, N., Lukac, M., Tran, L., Perkowski, M.: Two-stage approach to the minimization of quantum circuit Based on ESOP minimization and addition of a single ancilla qubit. In: 21 st International Workshop on Post-Binary ULSI Systems, pp. 25–36 (2012)

    Google Scholar 

  4. Cheng, A., Tsai, E., Perkowski, M., Rajendar, A., Wang, Y.: Comparison of Maslov’s quantum costs and LNNM quantum costs for four types of multi-qubit Toffoli gates. In: 21st International Workshop on Post-Binary ULSI Systems, pp. 81–87 (2012)

    Google Scholar 

  5. Fazel, K., Thornton, M., Rice, J.E.: ESOP-based Toffoli gate cascade generation. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 206–209 (2007)

    Google Scholar 

  6. Hamza, Z., Dueck, G.W.: Near-optimal ordering of ESOP cubes for Toffoli networks. In: 2nd Workshop on Reversible Computation, pp. 49–53 (2010)

    Google Scholar 

  7. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: 40th ACM/IEEE Design Automation Conference, pp. 318–323 (2003)

    Google Scholar 

  8. Miller, D.M., Wille, R., Drechsler, R.: Reducing reversible circuit cost by adding lines. In: 40th IEEE International Symposium on Multiple-Valued Logic, pp. 217–222 (2010)

    Google Scholar 

  9. Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive sum-of-products. In: 5th International Reed-Muller Workshop, pp. 242–250 (2001)

    Google Scholar 

  10. Mishchenko, A., Perkowski, M.: Logic synthesis of reversible wave cascades. In: IEEE/ACM International Workshop on Logic and Synthesis, pp. 197–202 (2002)

    Google Scholar 

  11. Nayeem, N.M., Rice, J.E.: A shared-cube approach to ESOP-based synthesis of reversible logic. Facta Univ. Ser.: Electron. Energ. 24, 385–402 (2011)

    Article  Google Scholar 

  12. Saeedi, M., Saheb Zamani, M., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. ACM J. Emerg. Technol. Comput. Syst. 6, 1–26 (2010)

    Article  Google Scholar 

  13. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 27, 436–444 (2008)

    Article  Google Scholar 

  14. Schaeffer, B., Tran, L., Gronquist, A., Perkowski, M., Kerntopf, P.: Synthesis of reversible circuits based on products of exclusive or sum. In: 43th IEEE International Symposium on Multiple-Valued Logic, pp. 35–40 (2013)

    Google Scholar 

  15. De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and Applications. Wiley-VCH, Weinheim (2010)

    Book  Google Scholar 

  16. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic. Int. J. Appl. Metaheuristic Comput. 1, 25–41 (2010)

    Article  Google Scholar 

  17. RevLib - An Online Resource for Reversible Functions and Circuits. http://revlib.org/

  18. Maslov, D.: Reversible Logic Synthesis Benchmarks Page. http://webhome.cs.uvic.ca/~dmaslov/

  19. Lee, S., Lee, S.-J., Kim, T., Lee, J.-S., Biamonte, J., Perkowski, M.: The cost of quantum gate primitives. J. Multiple-Valued Log. Soft Comput. 12, 561–574 (2006)

    MATH  MathSciNet  Google Scholar 

  20. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  Google Scholar 

  21. Maslov, D., Dueck, G.W.: Improved quantum cost of n-bit Toffoli gates. Electron. Lett. 39, 1790–1791 (2003)

    Article  Google Scholar 

  22. Tran, A., Wang, J.: A decomposition method for minimisation of reed-muller polynomials in mixed polarity. IEE Proc. Comput. Digit. Tech. 140, 65–68 (1993)

    Article  Google Scholar 

  23. Falkowski, B.J., Schaefer, I., Perkowski, M.A.: Effective computer methods for the calculation of Rademacher-Walsh spectrum for completely and incompletely specified Boolean functions. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 11, 1207–1226 (1992)

    Article  Google Scholar 

  24. Luccio, F., Pagli, L. On a new Boolean function with applications. IEEE Trans. Comput. 48(3), 296–310 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linh Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tran, L., Schaeffer, B., Gronquist, A., Perkowski, M., Kerntopf, P. (2014). Synthesis of Reversible Circuits Based on EXORs of Products of EXORs. In: Gavrilova, M., Tan, C., Thapliyal, H., Ranganathan, N. (eds) Transactions on Computational Science XXIV. Lecture Notes in Computer Science(), vol 8911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45711-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45711-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45710-8

  • Online ISBN: 978-3-662-45711-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics