Skip to main content

Fast MAP-Based Super-Resolution Image Reconstruction on GPU-CUDA

  • Conference paper
Geo-Informatics in Resource Management and Sustainable Ecosystem (GRMSE 2014)

Abstract

The traditional super-resolution image reconstruction methods for optimization and implementation are designed for common processor (CPU). According to the parallel computing capability of GPU-CUDA, a fast super-resolution image reconstruction method is presented based on GPU-CUDA. Additionally, we proposed the MAP framework that can allocate sub-pixel displacement information of low-resolution images to the unified super-resolution image grid. On the basis of the parallel architecture and hardware characteristic of GPU, the acceleration method use CUDA programmable parallel framework to optimize the data storage structure, improve the efficiency of data access and reduce the complexity of the algorithm. The experiment expressed that we could get an over ten times speed effect by this method than traditional super-resolution image reconstruction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://www.nvidia.cn/page/home.html

  2. Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Fast and Robust Multi-frame Super-resolution. IEEE Transactions on Image Processing 13(10), 1327–1344 (2004)

    Article  Google Scholar 

  3. Schultz, R.R., Stevenson, R.L.: Extraction of high-resolution frames from video sequences. IEEE Transactions Image Processing 5(6), 996–1011 (1996)

    Article  Google Scholar 

  4. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP 53(3), 231–239 (1991)

    Google Scholar 

  5. Elad, M., Feuer, A.: Super resolution restoration of an image sequence: adaptive filtering approach. IEEE Trans. Image Processing 8(3), 387–395 (1999)

    Article  Google Scholar 

  6. Hardie, R.: A fast image super-resolution algorithm usingan adaptive Wiener filter. IEEE Trans. Image Processing 16(12), 2953–2964 (2007)

    Article  MathSciNet  Google Scholar 

  7. Park, S.C., Park, M.K., Kang, M.G.: Super-Resolution Image Reconstruction: A technical Overview. IEEE Signal Processing Magazine, 21–36 (May 2003)

    Google Scholar 

  8. Marcelo, V.W.Z., Fermin, S.V.B., Joceji, M.: Determining the regularization parameters for super-resolution problem. Signal Processing 88(12), 2890–2901 (2008)

    Article  Google Scholar 

  9. Capel, D., Zisserman, A.: Super-resolution enhancement of text image sequences. In: Proceeding of the International Conference on Pattern Recognition, pp. 600–605. IEEE Computer Society, Barcelona (2000)

    Google Scholar 

  10. Farsiu, S., Robinson, M.D.: Fast and robust multiframe super resolution. IEEE Trans. on Image Processing 13(10), 1327–1344 (2004)

    Article  Google Scholar 

  11. Li, X.L., Hu, Y.T., Gao, X.B., et al.: A mult-iframe image super-resolution method. Signal Processing 90(2), 405–414 (2010)

    Article  Google Scholar 

  12. Ni, K., Nguyen, T.Q.: Image super-resolution using support vector regression. IEEE Transactions Image Processing 16(6), 1596–1610 (2007)

    Article  MathSciNet  Google Scholar 

  13. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learninglow-level vision. International Journal of Computer Vision 40(1), 25–47 (2002)

    Article  Google Scholar 

  14. Yang, J.C., Wright, J., Ma, Y., et al.: Image super-resolutionas sparser epresentation of raw image patches. In: CVPR, pp. 1–8. IEEE Computer Society Press, Anchorage (2008)

    Google Scholar 

  15. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  16. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  17. Boykov, Y., Veksler, O., Zabih, R.: Fast Approximate Energy Minimization via Graph Cuts. IEEE TPAMI 20(12), 1222–1239 (2001)

    Article  Google Scholar 

  18. Tsai, R.Y., Huang, T.S.: Multiframe image restoration and registration. Advances in Computer Vision and Image Processing 1, 317–339 (1984)

    Google Scholar 

  19. Lertrattanapanich, S., Bose, N.K.: High resolution image formation from low resolution frames using delaunay triangulation. IEEE Transactions on Image Processing 11(12), 1427–1441 (2002)

    Article  MathSciNet  Google Scholar 

  20. Banham, M.R., Katsaggelos, A.K.: Digital image restoration. IEEE Signal Processing Magazine 14(2), 24–41 (1997)

    Article  Google Scholar 

  21. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Transactions on Image Processing 13(10), 1327–1344 (2004)

    Article  Google Scholar 

  22. Freeman, W.T., Jones, T.R., Paztor, E.C.: Example based superresolution. IEEE Computer Graphics and Applications 22(2), 56–65 (2002)

    Article  Google Scholar 

  23. Sun, J., Zheng, N.N., Tao, H., Shum, H.Y.: Image hallucination with primal sketch priors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), vol. 2, pp. 729–736 (June 2003)

    Google Scholar 

  24. Cang, H., Oung, D.Y.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), vol. 1, pp. 275–282 (July 2004)

    Google Scholar 

  25. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning lowlevel vision. International Journal of Computer Vision 40(1), 25–47 (2004)

    Article  Google Scholar 

  26. Dai, S., Han, M., Xu, W., Wu, Y., Gong, Y.: Soft edge smoothness prior for alpha channel super resolution. In: IEEE Computer Vision and Pattern Recognition (CVPR 2007), pp. 1–8 (June 2007)

    Google Scholar 

  27. Yang, J., Wright, J., Ma, Y., Huang, T.: Image super-resolution as sparse representation of raw image patches. In: IEEE Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–8 (August 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, Z., Chen, Z., Shi, R. (2015). Fast MAP-Based Super-Resolution Image Reconstruction on GPU-CUDA. In: Bian, F., Xie, Y. (eds) Geo-Informatics in Resource Management and Sustainable Ecosystem. GRMSE 2014. Communications in Computer and Information Science, vol 482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45737-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45737-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45736-8

  • Online ISBN: 978-3-662-45737-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics