Skip to main content

Finding a Forest in a Tree

The Matching Problem for Wide Reactive Systems

  • Conference paper
  • First Online:
Trustworthy Global Computing (TGC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8902))

Included in the following conference series:

Abstract

Wide reactive systems are rewriting systems specified by wide reaction rules, where redex and reactum are lists of terms (forests), i.e. rules of the form \(\langle l_1(\mathbf {x}_1),\dots ,l_n(\mathbf {x}_n) \rangle \Rightarrow \langle r_1(\mathbf {y}_1),\dots ,r_n(\mathbf {y}_n) \rangle \) such that \(\cup _i \mathbf {y}_i \subseteq \cup _i \mathbf {x}_i\). Wide reaction rules are particularly useful for process calculi for mobile and global computations, because they allow one to connect processes which can be at different places in the system, possibly crossing boundaries and firewalls. For instances, remote procedure calls can be modeled as a process in place \(i\) activating a reaction in a different place \(j\); code mobility can be modeled by instantiating variables in \(\mathbf {y}_i\) with terms using variables from \(\mathbf {x}_j\), for a different \(j\); etc.

In order to apply a wide reaction rule, we have to find a matching of the rule redex within the global state. This problem can be restated as follows: how to match a given forest (the redex) inside an unordered tree (the system), possibly finding the subtrees to be grafted at the forest’s leaves (i.e., instantiating the variables)? We show that, although the problem is NP-complete in general, the exponential explosion depends only on the number \(n\) of roots of the forest (the width of the redex), and not on the size of the global tree (the system state). In most practical cases, the width is constant and small (i.e., \(\le 3\)), hence our results show that the wide reaction systems can be actually used for process calculi.

This work is partially supported by MIUR PRIN project 2010LHT4KM, CINA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacci, G., Grohmann, D., Miculan, M.: Bigraphical models for protein and membrane interactions. In: Ciobanu, G. (ed.) Proc. MeCBIC. Electronic Proceedings in Theoretical Computer Science, vol. 11, pp. 3–18 (2009)

    Google Scholar 

  2. Bezem, M., Klop, J.W., de Vrijer, R.: Term rewriting systems. CUP (2003)

    Google Scholar 

  3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: Proc. STOC 2007, pp. 67–74. ACM (2007)

    Google Scholar 

  4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On Problems without Polynomial Kernels (Extended Abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and Pipelines for Structured Service Programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Cardelli, L., Gordon, A.D.: Mobile Ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. STOC 1971, pp. 151–158. ACM (1971)

    Google Scholar 

  8. Damgaard, T.C., Glenstrup, A.J., Birkedal, L., Milner, R.: An inductive characterization of matching in binding bigraphs. Formal Aspects of Computing 25(2), 257–288 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dörr, H.: Efficient graph rewriting and its implementation, vol. 922. LNCS. Springer (1995)

    Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: Basic results. SIAM J. Comput. 24(4), 873–921 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ferrari, G.-L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised Hyperedge Replacement as a Model for Service Oriented Computing. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 22–43. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Hopcroft, J.E., Tarjan, R.E.: A v\(^2\) algorithm for determining isomorphism of planar graphs. Inf. Process. Lett. 1(1), 32–34 (1971)

    Article  MATH  Google Scholar 

  13. Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs (preliminary report). In: Proc. STOC 1974, pp. 172–184. ACM (1974)

    Google Scholar 

  14. Jensen, O.H., Milner, R.: Bigraphs and transitions. In: Proc. POPL, pp. 38–49. ACM (2003)

    Google Scholar 

  15. Krivine, J., Milner, R., Troina, A.: Stochastic bigraphs. In: Proc. MFPS. Electronic Notes in Theoretical Computer Science, vol. 218, pp. 73–96 (2008)

    Google Scholar 

  16. Mansutti, A., Miculan, M., Peressotti, M.: Towards distributed bigraphical reactive systems. In: Echahed, R., Habel, A., Mosbah, M. (eds.) Proc. GCM 2014, p. 45 (2014)

    Google Scholar 

  17. Matula, D.W.: Subtree isomorphism in \(\mathop {O}(n^{5/2})\). Annals of Discrete Mathematics 2, 91–106 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Miculan, M., Peressotti, M.: A CSP implementation of the bigraph embedding problem. In: Proc. 1st International Workshop on Meta Models for Process Languages (MeMo) (2014)

    Google Scholar 

  19. Milner, R.: The Space and Motion of Communicating Agents. CUP (2009)

    Google Scholar 

  20. Serbanuta, T.-F., Rosu, G., Meseguer, J.: A rewriting logic approach to operational semantics. Inf. Comput. 207(2), 305–340 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sevegnani, M., Unsworth, C., Calder, M.: A SAT based algorithm for the matching problem in bigraphs with sharing. Technical Report TR-2010-311, Department of Computer Science, University of Glasgow (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Bacci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bacci, G., Miculan, M., Rizzi, R. (2014). Finding a Forest in a Tree. In: Maffei, M., Tuosto, E. (eds) Trustworthy Global Computing. TGC 2014. Lecture Notes in Computer Science(), vol 8902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45917-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45917-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45916-4

  • Online ISBN: 978-3-662-45917-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics