Abstract
Semantic matching is widely used in many natural language processing tasks. In this paper, we focus on the semantic matching between short texts and design a model to generate deep features, which describe the semantic relevance between short “text object”. Furthermore, we design a method to combine shallow features of short texts (i.e., LSI, VSM and some other handcraft features) with deep features of short texts (i.e., word embedding matching of short text). Finally, a ranking model (i.e., RankSVM) is used to make the final judgment. In order to evaluate our method, we implement our method on the task of matching posts and responses. Results of experiments show that our method achieves the state-of-the-art performance by using shallow features and deep features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mnih, A., Hinton, G.: Three new graphical models for statistical language modelling. In: International Conference on Machine Learning, ICML (2007)
Leuski, A., Traum, D.R.: Npceditor: Creating virtual human dialogue using information retrieval techniques. AI Magazine 32(2), 42–56 (2011)
Wang, H., Lu, Z., Li, H., Chen, E.: A dataset for research on short-text conversations. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, pp. 935–945 (2013)
Williams, J.D., Young, S.: Partially observable markov decision processes for spoken dialog systems. Comput. Speech Lang. 21(2), 393–422 (2007)
Schatzmann, J., Weilhammer, K., Stuttle, M., Young, S.: A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies. Knowl. Eng. Rev., 97–126 (2006)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine translation. CoRR, abs/1309.4168 (2013)
Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management, pp. 2333–2338. ACM (2013)
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research (JMLR) 12, 2493–2537 (2011)
Jafarpour, S., Burges, C.J.C.: Filter, rank, and transfer the knowledge: Learning to chat (2010)
Socher, R., Huang, E.H., Pennington, J., Ng, A.Y.: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: Advances in Neural Information Processing Systems (2011)
Socher, R., Huang, E.H., Pennington, J., Ng, A.Y., Manning, C.D.: Semisupervised recursive autoencoders for predicting sentiment distributions. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (2011)
Misu, T., Georgila, K., Leuski, A., Traum, D.: Reinforcement learning of question-answering dialogue policies for virtual museum guides. In: Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue, SIGDIAL 2012, pp. 84–93 (2012)
Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 133–142. ACM, New York (2002)
Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. Journal of Machine Learning Research (JMLR) 3, 1137–1155 (2003)
Lu, Z., Li, H.: A deep architecture for matching short texts. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 1367–1375. Curran Associates, Inc. (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kang, L., Hu, B., Wu, X., Chen, Q., He, Y. (2014). A Short Texts Matching Method Using Shallow Features and Deep Features. In: Zong, C., Nie, JY., Zhao, D., Feng, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2014. Communications in Computer and Information Science, vol 496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45924-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-662-45924-9_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45923-2
Online ISBN: 978-3-662-45924-9
eBook Packages: Computer ScienceComputer Science (R0)